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1 Preliminary

In this chapter, we review some basic knowledge in linear algebra and all
materials here can be found in any introductory book on linear algebra.

1.1 Matrices

Definition 1.1.1 (Matrix). Let m and n be positive integers. An m × n
matrix over R (C) is a rectangular array of the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


where aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, are real (complex) numbers. We may also
write a matrix as A = [aij].

Definition 1.1.2 (Matrix operations).

1. Matrix addition: Let A = [aij] and B = [bij] be two m× n matrices.
Then

[A+B]ij = aij + bij

In other words
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

+


b11 b12 · · · b1n

b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn



=


a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n
...

...
. . .

...
am1 + bm1 am2 + bm2 · · · amn + bmn


2. Scalar multiplication: Let A = [aij] be a m × n matrix and c be a

real (complex) number. Then

[cA]ij = caij
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In other words

c


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n
...

...
. . .

...
cam1 cam2 · · · camn

 .

3. Matrix multiplication: Let A = [aij] be an m × n matrix and B =
[bjk] be an n × p matrix. The matrix product of A and B is an m × p
matrix and

[AB]ik =
n∑
j=1

aijbjk = ai1b1k + ai2b2k + · · ·+ ainbnk

for 1 ≤ i ≤ m, 1 ≤ k ≤ p. Note that the ik-th entry of AB is the sum
of the products of the corresponding entries in the i-th row of A and
the k-th column of B.

Example 1.1.3. If A is a 3× 2 matrix and B is a 2× 2 matrix, then a11 a12

a21 a22

a31 a32

( b11 b12

b21 b22

)
=

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

a31b11 + a32b21 a31b12 + a32b22


is a 3× 2 matrix.

Remarks 1.1.4. Let A, B, C be matrices.

1. AB is defined only when the number of columns of A is equal to the
number of rows of B.

2. In general, AB 6= BA even when they are both defined and of the same
type.

3. In general, AB = 0 does not implies that A = 0 or B = 0.

4. In general, AB = AC and A 6= 0 does not implies B = C.

Proposition 1.1.5 (Properties of matrix multiplication). The following equal-
ities hold true whenever the expressions involved are defined.
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1. (AB)C = A(BC)

2. (A+B)C = AC +BC and C(A+B) = CA+ CB

3. c(AB) = (cA)B = A(cB)

Proof. We prove the associativity of matrix multiplication. The other two
properties are obvious. Write A = [aij], B = [bjk], C = [ckl]. Then

[(AB)C]il =
∑
k

[AB]ikckl

=
∑
k

(∑
j

aijbjk

)
ckl

=
∑
k

(∑
j

aijbjkckl

)

=
∑
j

(∑
k

aijbjkckl

)

=
∑
j

aij

(∑
k

bjkckl

)
=

∑
j

aij[BC]jl

= [A(BC)]il

Therefore (AB)C = A(BC).

Definition 1.1.6 (Transpose). The transpose of an m×n matrix A = [aij]
is the n × m matrix AT obtained by interchanging rows and columns of A,
i.e.,

[AT ]ji = aij

for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proposition 1.1.7 (Properties of transpose). Let A and B be matrices.

1. (AT )T = A

2. (A+B)T = AT +BT
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3. (cA)T = cAT

4. (AB)T = BTAT

Definition 1.1.8 (Symmetric and anti-symmetric matrices). Let A be an
n× n matrix.

1. We say that A is a symmetric matrix if AT = A.

2. We say that A is an anti-symmetric matrix (or a skew-symmetric
matrix) if AT = −A.

Definition 1.1.9 (Diagonal matrix). An n× n matrix of the form

D =


a11

a22
0

. . .

0 ann


is called a diagonal matrix.

Definition 1.1.10 (Zero matrix and identity matrix). Let m, n be a positive
integers.

1. The m× n zero matrix is the matrix which every entry equals to 0.

2. The identity matrix of size n is the matrix

I =


1

1 0
. . .

0 1


The zero matrix is the identity with respect to addition, that means,

A + 0 = 0 + A = A for any m × n matrix A. The identity matrix is the
identity with respect to matrix multiplication, that means, AI = IA = A for
any n× n matrix A.

Let A be an m×n matrix. The homogeneous equation Ax = 0 always
has the solution x = 0 which is called the trivial solution. If m < n, the
equation Ax = 0 always has a nontrivial solution x 6= 0.
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Proposition 1.1.11. Suppose A is an m × n matrix where m < n. Then
the homogeneous equation Ax = 0 has a nontrivial solution x 6= 0.

Proof. Using Gaussian elimination, one may reduce the matrix A to a row
echelon form. There are at most m columns which contain leftmost nonzero
leading entries. Since m < n, there is at least one column, say the k-th
column, which does not contain a nonzero leading entry. Then there is a
nontrivial solution whose k-th coordinate is nonzero.

Definition 1.1.12 (Matrix inverse). An n × n matrix A is said to be in-
vertible, if there exists a matrix A−1 called the inverse of A such that

AA−1 = A−1A = I

where I is the identity matrix.

Inverse only makes sense for square matrix, that is, an n × n matrix.
We know that any nonzero number has a multiplicative inverse, but inverse
of a nonzero square matrix does not always exist. However the inverse of a
matrix is unique whenever it exists. In the next section, we will discuss an
important condition for the existence of inverse of a matrix.

Proposition 1.1.13 (Properties of inverse). Let A and B be two invertible
n× n matrices over real (complex) numbers.

1. The inverse A−1 is invertible and (A−1)−1 = A

2. For any nonnegative integer k, Ak is invertible and (Ak)−1 = (A−1)k.
This allows us to define A−k = (A−1)k.

3. For any nonzero real (complex) number c, cA is invertible and (cA)−1 =
c−1A−1

4. The product AB is invertible and

(AB)−1 = B−1A−1

5. AT is invertible and
(AT )−1 = (A−1)T
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1.2 Determinant

In this section, we discuss determinant of a square matrix. Determinant can
be defined in many different ways. Here we adopt the inductive definition.

Definition 1.2.1 (Determinant). Let n be a positive integer and

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


be an n× n matrix. The determinant of A is denoted by

det(A) =

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
and is defined inductively by

1. For n = 1, we have det(A) = a11.

2. For n > 1, we have

det(A) = a11 det(A11)− a12 det(A12) + · · ·+ (−1)n+1a1n det(A1n)

where Aij, 1 ≤ i, j ≤ n is the submatrix of A obtained by deleting the
i-th row and the j-th column of A.

Example 1.2.2.

1. 1× 1 determinant:
det((a11)) = a11

2. 2× 2 determinant: ∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21
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3. 3× 3 determinant:∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣ a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31

In the definition, we define determinant inductively by expansion along
the first row. In fact we can find the value of det(A) by expanding along any
row or column of A. We have for any fixed i = 1, 2, · · · , n,

det(A)

=
n∑
j=1

(−1)i+jaij det(Aij)

= (−1)i+1ai1 det(Ai1) + (−1)i+2ai2 det(Ai2) + · · ·+ (−1)i+nain det(Ain)

and for any fixed j = 1, 2, · · · , n,

det(A)

=
n∑
i=1

(−1)i+jaij det(Aij)

= (−1)1+ja1j det(A1j) + (−1)2+ja2j det(A2j) + · · ·+ (−1)n+janj det(Anj)

Example 1.2.3. We can calculate a 4 × 4 determinant as follows. Here in
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the first step, we expand the determinant along the second column.∣∣∣∣∣∣∣∣
2 4 −2 6
1 2 5 4
1 1 2 4
0 2 −6 3

∣∣∣∣∣∣∣∣
= −4

∣∣∣∣∣∣
1 5 4
1 2 4
0 −6 3

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
2 −2 6
1 2 4
0 −6 3

∣∣∣∣∣∣−
∣∣∣∣∣∣

2 −2 6
1 5 4
0 −6 3

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
2 −2 6
1 5 4
1 2 4

∣∣∣∣∣∣
= −4

(∣∣∣∣ 2 4
−6 3

∣∣∣∣− ∣∣∣∣ 5 4
−6 3

∣∣∣∣)+ 2

(
2

∣∣∣∣ 2 4
−6 3

∣∣∣∣− ∣∣∣∣ −2 6
−6 3

∣∣∣∣)
−
(

2

∣∣∣∣ 5 4
−6 3

∣∣∣∣− ∣∣∣∣ −2 6
−6 3

∣∣∣∣)+ 2

(
2

∣∣∣∣ 5 4
2 4

∣∣∣∣− ∣∣∣∣ −2 6
2 4

∣∣∣∣+

∣∣∣∣ −2 6
5 4

∣∣∣∣)
= −4(30− 39) + 2(60− 30)− (78− 30) + 2(24− (−20) + (−38))

= 60

The above calculation of determinant is not very efficient. Later we will
discuss more efficient methods of finding determinant.

There is a direct formula for determinant and it can be proved by induc-
tion on n.

Proposition 1.2.4 (Direct formula for determinant). Let n be a positive
integer and A = [aij]. Then

det(A) =
∑
σ∈Sn

sign(σ)a1σ(1)a2σ(2) · · · anσ(n)

where Sn is the set of all permutations1 of 1, 2, · · · , n and sign(σ) = 1,−1
when σ is a composition of even, odd number of transpositions2 respectively.

The formula in the above proposition can be used as an alternative defi-
nition of determinant. It has an advantage of having a simple and symmetric
form. Some properties of determinant, e.g. skew-symmetry, can be proved

1Note that the number of elements in Sn, and hence the number of terms in the formula,
is n!.

2A transposition is a permutation which interchanges two numbers and leaves the other
numbers unchange. It can be proved that sign(σ) does not depend on how σ is written as
composition of transpositions.
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easily using the formula. However it is not very efficient to use the formula
to calculate the value of determinant.

Next we explain another important way of interpreting the determinant.
Write

A = [a1, a2, . . . , an]

where a1, a2, . . . , an are column vectors of A. We may consider det(A) as
a real valued function of a1, a2, . . . , an. Then the determinant is a function
from (Rn)n = Rn×Rn×· · ·×Rn to R which is characterized by the following
properties.

Theorem 1.2.5 (Characterizing properties of determinant). The determi-
nant det : (Rn)n → R is a function characterized by the following properties.

1. (Multilinearity) For any k = 1, 2, . . . , n and α, β ∈ R

det[a1, . . . , ak−1, αu + βv, ak+1, . . . , an]

= α det[a1, . . . , ak−1,u, ak+1, . . . , an] + β det[a1, . . . , ak−1,v, ak+1, . . . , an].

2. (Anti-symmetry) For any 1 ≤ i < j ≤ n,

det[a1, . . . , ai, . . . , aj, . . . , an] = − det[a1, . . . , aj, . . . , ai, . . . , an].

3. (Determinant of identity) We have

det[e1, e2, . . . , en] = 1

where
ei = (0, . . . , 0, 1, 0 . . . , 0)T ∈ Rn

is the n column vector with the i-th entry equals to 1 and all other
entries equal to 0. In other words, det(I) = 1 where I is the n × n
identity matrix.

Furthermore, if f : (Rn)n → R is a function which is multilinear, anti-
symmetric and satisfies

f(e1, e2, . . . , en) = k,

then
f(v1,v2, . . . ,vn) = k det(v1,v2, . . . ,vn)

for any v1,v2, . . . ,vn ∈ Rn.
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Proof. It follows readily by the formula for determinant (Proposition 1.2.4)
that det satisfies the three properties. Suppose f : (Rn)n → R is a function
which is multilinear, anti-symmetric and satisfies f(e1, e2, . . . , en) = k. Con-
sider the function g = f − k det. Then g is multilinear, anti-symmetric
and satisfies g(e1, e2, . . . , en) = 0. Now the anti-symmetry implies that
g(ei1 , ei2 , . . . , ein) = 0 where i1, i2, . . . , in is any permutation of 1, 2, . . . , n.
Then it follows by multilinearity that g(v1,v2, . . . ,vn) = 0 for any vectors
v1,v2, . . . ,vn ∈ Rn. Therefore f = k det.

In practice, we usually do not use definition to calculate the determi-
nant because it is not efficient. In stead, we use elementary row or column
operations and the following proposition allows us to do so.

Proposition 1.2.6 (Determinant under row and column operations). Let A
be an n× n matrix.

1. If B is obtained from A by multiplying a single row (or column) of A
by a constant k, then det(B) = k det(A).

2. If B is obtained from A by interchanging two rows (or columns) of A,
then det(B) = − det(A).

3. If B is obtained from A by adding a constant multiple of one row (or
column) of A to another row (or column) of A, then det(B) = det(A).
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Example 1.2.7. We can calculate a 4× 4 determinant as follows.∣∣∣∣∣∣∣∣
2 4 −2 6
1 2 5 4
1 1 2 4
0 2 −6 3

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 2 −1 3
1 2 5 4
1 1 2 4
0 2 −6 3

∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣
1 2 −1 3
0 0 6 1
0 −1 3 1
0 2 −6 3

∣∣∣∣∣∣∣∣
= −2(1)

∣∣∣∣∣∣
−1 3 1
0 6 1
2 −6 3

∣∣∣∣∣∣
= −2

∣∣∣∣∣∣
−1 3 1
0 6 1
0 0 5

∣∣∣∣∣∣
= −2(−1)

∣∣∣∣ 6 1
0 5

∣∣∣∣
= 2(30)

= 60

Determinant has the following further properties.

Proposition 1.2.8 (Further properties of determinant). Let A be an n× n
matrix.

1. If A has a row (or column) consisting entirely of zeros, then det(A) = 0.

2. If two rows (or columns) of A are identical, then det(A) = 0.

3. If A is an upper triangular matrix, that is,

A =


a11

a22 *
. . .

0 ann


Then det(A) = a11a22 · · · ann. In particular, the determinant of a diag-
onal matrix is the product of its diagonal entries.
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4. det(cA) = cn det(A) for any c ∈ R. (Caution! det(cA) 6= c det(A))

5. det(AT ) = det(A)

The following property of determinant is important and is less obvious.

Proposition 1.2.9. Let A and B be two n× n matrices. Then

det(AB) = det(A) det(B).

Proof. Write
B = [v1,v2, . . . ,vn]

where v1,v2, . . . ,vn are column vectors of B and observe that

AB = [Av1, Av2, . . . , Avn].

Consider v1,v2, . . . ,vn as variables of the function f : (Rn)n → R defined by

f(v1,v2, . . . ,vn) = det([Av1, Av2, . . . , Avn]).

Then f is obviously multilinear and anti-symmetric. Moreover

f(e1, e2, . . . , en) = det([Ae1, Ae2, . . . , Aen]) = det(A)

where e1, e2, . . . , en is the standard basis for Rn. Therefore

det(AB) = f(v1,v2, . . . ,vn)

= det(A) det([v1,v2, . . . ,vn]) (Theorem 1.2.5)

= det(A) det(B).

Let A = [aij] be an n× n matrix. We define the (i, j) cofactor by

Aij = (−1)i+j det(Mij)

where Mij is the submatrix of A obtained by deleting the i-th row and j-th
column of A. Observe that for any fixed i = 1, 2, . . . , n,

n∑
j=1

aijAij = ai1Ai1 + ai2Ai2 + · · ·+ ainAin = det(A)
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since the left hand side is nothing but the expansion of determinant along
the i-th row. On the other hand, for k 6= i, we have

n∑
j=1

akjAij = ak1Ai1 + ak2Ai2 + · · ·+ aknAin = 0

since the left hand side is the determinant of the matrix obtained by replacing
the i-th row by the k-th row which must be 0 because the i-th and the k-th
row are identical. Similarly, we have

n∑
i=1

Aijaij = A1ja1j + A2ja2j + · · ·+ Anjanj = det(A)

and
n∑
i=1

Ailaij = A1la1j + A2la2j + · · ·+ Anlanj = 0

for l 6= j. The above equalities can be summarized into the following identity.

Proposition 1.2.10. Let A = [aij] be an n × n matrix and adj(A) is the
adjugate matrix of A, that is [adj(A)]ij = Aji where Aij is the (i, j) cofactor
of A. Then

Aadj(A) = adj(A)A = det(A)I

where I is the n× n identity matrix.

Now we have a simple criterion for a matrix to be invertible and a formula
for the inverse of an invertible matrix.

Proposition 1.2.11. Let A = [aij] be an n×n matrix. Then A is invertible,
that is, the inverse A−1 of A exists, if and only if det(A) 6= 0. Moreover if
A is invertible, then

A−1 =
1

det(A)
adj(A)

where adj(A) is the adjugate matrix of A.

Proof. Suppose A is invertible. Then the inverse A−1 of A exists and we have
AA−1 = A−1A = I Thus

det(A) det(A−1) = det(I) = 1
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which implies det(A) 6= 0.
Suppose det(A) 6= 0. Then

A

(
1

det(A)
adj(A)

)
=

(
1

det(A)
adj(A)

)
A = I.

Thus 1
det(A)

adj(A) is the inverse of A and hence A is invertible.

Definition 1.2.12 (Trace). Let A = [aij] be an n× n matrix. The trace of
A is defined by

tr(A) = a11 + a22 + · · ·+ ann.

Proposition 1.2.13 (Properties of trace). Let A,B be n × n matrices and
k ∈ R. Then

1. tr(A+B) = tr(A) + tr(B)

2. tr(kA) = ktr(A)

3. tr(AB) = tr(BA)

Proof. The first two properties are obvious. For the third one, let A = [aij]
and B = [bij]. Then

tr(AB) =
n∑
i=1

[AB]ii

=
n∑
i=1

n∑
j=1

aijbji

=
n∑
j=1

n∑
i=1

bjiaij

=
n∑
j=1

[BA]jj

= tr(BA)
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1.3 Vectors

In mathematics, the term vector refers to an element in any vector space. In
these notes, the only vector space we consider is the Euclidean space Rn.

Definition 1.3.1 (Euclidean space). Let n be a positive integer. The n
dimensional Euclidean space is the set

Rn = {(x1, x2, . . . , xn) : xi ∈ R for any i = 1, 2, . . . , n}.

Definition 1.3.2 (Vector addition and scaler multiplication).

1. Vector addition: Let u = (u1, u2, . . . , un),v = (v1, v2, . . . , vn) ∈ Rn.
Define

u + v = (u1 + v1, u2 + v2, . . . , un + vn).

2. Scalar multiplication: Let v = (v1, v2, . . . , vn) ∈ Rn and α ∈ R.
Define

αv = (αv1, αv2, . . . , αvn).

Next we define scalar product on Rn which will be used to define distance
between two points and angle between two vectors in Rn.

Definition 1.3.3 (Scalar product). Let u = (u1, u2, . . . , un),v= (v1, v2,. . . ,vn)∈
Rn. The scalar product, or dot product, of u and v is defined by

〈u,v〉 = u1v1 + u2v2 + · · ·+ unvn.

Note that the scalar product of two vectors is a number, not a vector.

Proposition 1.3.4 (Properties of scalar product). Let u,v,w ∈ Rn and
α, β ∈ R. Then

1. (Bilinear):
〈αu + βv,w〉 = α〈u,w〉+ β〈v,w〉

2. (Symmetric):
〈v,u〉 = 〈u,v〉

3. (Positive definite):
〈v,v〉 ≥ 0

with equality holds if and only if v = 0.
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The following proposition is simple but has many important applications.

Proposition 1.3.5. Let v ∈ Rn be a vector. Suppose

〈u,v〉 = 0 for any u ∈ Rn.

Then v = 0.

Proof. Take u = v. Then we have 〈v,v〉 = 0. Therefore v = 0.

We may use scalar product to define norm which may be consider as
length of vectors.

Definition 1.3.6 (Norm). Let v = (v1, v2, . . . , vn) ∈ Rn. The norm of v is
defined as

‖v‖ =
√
〈v,v〉 =

√
v2

1 + v2
2 + · · ·+ v2

n.

Definition 1.3.7 (Unit vector). We say that v ∈ Rn is a unit vector if
‖v‖ = 1.

Theorem 1.3.8 (Cauchy-Schwarz inequality). For any u,v ∈ Rn, we have

|〈u,v〉| ≤ ‖u‖‖v‖

with equality holds if and only if u = 0 or v = αu for some real number α.

Proof. Suppose u = 0. Then the inequality holds obviously. Suppose u 6= 0.
Consider the scalar product

〈tu− v, tu− v〉 = t2〈u,u〉 − 2t〈u,v〉+ 〈v,v〉

which is a quadratic expression in t and is non-negative for any t ∈ R.
Therefore the discriminant satisfies

(2〈u,v〉)2 − 4〈u,u〉〈v,v〉 ≤ 0

which means
〈u,v〉2 ≤ 〈u,u〉〈v,v〉

Now equality holds if and only if there exists α ∈ R such that ‖αu− v‖ = 0
which means v = αu.
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Cauchy-Schwarz inequality has two applications. The first one is triangle
inequality.

Proposition 1.3.9 (Properties of norm). Let u,v ∈ Rn and α ∈ R.

1. ‖αv‖ = |α|‖v‖

2. ‖v‖ ≥ 0 with ‖v‖ = 0 if and only if v = 0.

3. (Triangle inequality):

‖u + v‖ ≤ ‖u‖+ ‖v‖

4. (Parallelogram law):

〈u,v〉 =
1

4

(
‖u + v‖2 − ‖u− v‖2

)
Proof. The first two properties are obvious. We prove the triangle inequality
and parallelogram law.

3. (Triangle inequality)

‖u + v‖2 = 〈u + v,u + v〉
= 〈u,u〉+ 2〈u,v〉+ 〈v,v〉
≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 (Cauchy-Schwarz inequality)

= (‖u‖+ ‖v‖)2

4. (Parallelogram law)

‖u + v‖2 − ‖u− v‖2

= 〈u + v,u + v〉 − 〈u− v,u− v〉
= (‖u‖2 + 2〈u,v〉+ ‖v‖2)− (‖u‖2 − 2〈u,v〉+ ‖v‖2)

= 4〈u,v〉

The second application is that Cauchy-Schwarz inequality allows us to
define angle between two vectors.
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Definition 1.3.10 (Angle between two vectors). Let u,v ∈ Rn be two
nonzero vectors. The angle between u and v is the unique θ ∈ [0, π] such
that

cos θ =
〈u,v〉
‖u‖‖v‖

Note that the above definition makes sense, that is, there exists θ ∈ [0, π]

such that cos θ = 〈u,v〉
‖u‖‖v‖ because

∣∣∣ 〈u,v〉‖u‖‖v‖

∣∣∣ ≤ 1 for any nonzero vectors u,v by

Cauchy-Schwarz inequality.

Definition 1.3.11 (Orthogonal vectors). Let u,v ∈ Rn be two vectors. We
say that u and v are orthogonal and write u ⊥ v if

〈u,v〉 = 0

Next we introduce a second kind of product which is defined only in R3.

Definition 1.3.12 (Cross product). Let u = (u1, u2, u3),v= (v1, v2, v3)∈ R3

be two vectors in R3. The cross product, or vector product, of u and v
is defined by

u× v =

∣∣∣∣∣∣
i j k
u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣ =

∣∣∣∣ u2 u3

v2 v3

∣∣∣∣ i− ∣∣∣∣ u1 u3

v1 v3

∣∣∣∣ j +

∣∣∣∣ u1 u2

v1 v2

∣∣∣∣k
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

where i = (1, 0, 0), j = (0, 1, 0),k = (0, 0, 1).

Proposition 1.3.13 (Properties of cross product).

1. i× j = k, j× k = i, k× i = j

2. (Bilinear) For any α, β ∈ R and u,v,w ∈ R3,

(αu + βv)×w = αu×w + βv ×w

3. (Anti-symmetric) For any u,v ∈ R3,

v × u = −u× v

4. For any u,v ∈ R3, we have u× v ⊥ u and u× v ⊥ v, that is

〈u× v,u〉 = 〈u× v,v〉 = 0
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5. For any u,v ∈ R3,
u× v = ‖u‖‖v‖ sin θ n

where θ is the angle between u and v, and n is the unit vector normal
to the plane spanned by u and v with direction determined by the right
hand rule. In other words,

(a) ‖u× v‖ is equal to the area of the parallelogram spanned by u, v.

(b) u × v is normal to the plane spanned by u and v with direction
determined by the right hand rule.

6. (Jacobi identity) For any u,v,w ∈ R3,

u× (v ×w) + v × (w × u) + w × (u× v) = 0

7. For any u,v,w ∈ R3,

u× (v ×w) = 〈u,w〉v − 〈u,v〉w

Next we define a product which involves three vectors.

Definition 1.3.14 (Scalar triple product). Let u = (u1, u2, u3),v = (v1, v2, v3),w =
(w1, w2, w3) ∈ R3. The scalar triple product of u,v,w is defined by

〈u,v ×w〉 =

∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣ .
The value |〈u,v×w〉| is equal to the volume of the parallelepiped spanned

by u,v,w. The sign of 〈u,v ×w〉 depends on the orientation of u,v,w. It
is positive if u,v,w are in right hand orientation and otherwise negative.

Proposition 1.3.15 (Properties of scalar triple product). Scalar triple prod-
uct has the following properties.

1. Multi-linear

2. Anti-symmetric

3. 〈i, j× k〉 = 1
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Proposition 1.3.16 (Cyclic property of scalar triple product). Let u,v,w ∈
R3 be three vectors. We have

〈u,v ×w〉 = 〈v,w × u〉 = 〈w,u× v〉

The following three identities are useful in studying curvature of surfaces.

Proposition 1.3.17.

1. For any u1,v1,u2,v2 ∈ R3,∣∣∣∣ 〈u1,u2〉 〈u1,v2〉
〈v1,u2〉 〈v1,v2〉

∣∣∣∣ = 〈u1 × v1,u2 × v2〉

2. For any u,v ∈ R3, ∣∣∣∣ 〈u,u〉 〈u,v〉〈v,u〉 〈v,v〉

∣∣∣∣ = ‖u× v‖2

3. For any x11,x12,x21,x22,u,v ∈ R3,∣∣∣∣ 〈x11,u× v〉 〈x12,u× v〉
〈x21,u× v〉 〈x22,u× v〉

∣∣∣∣
=

∣∣∣∣∣∣
〈x11,x22〉 − 〈x12,x21〉 〈x11,u〉 〈x11,v〉

〈x22,u〉 〈u,u〉 〈u,v〉
〈x22,v〉 〈v,u〉 〈v,v〉

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 〈x12,u〉 〈x12,v〉

〈x21,u〉 〈u,u〉 〈u,v〉
〈x21,v〉 〈v,u〉 〈v,v〉

∣∣∣∣∣∣
We turn our discussion to bases for vector subspaces of Rm.

Definition 1.3.18 (Vector subspace). We say that a subset V ⊂ Rm is a
vector subspace of Rm if V contains the zero vector 0 and for any u,v ∈ V ,
α, β ∈ R, we have

αu + βv ∈ V.

In other words, V ⊂ Rm is a vector subspace if V contains the zero
vector 0 and V is closed under addition and scalar multiplication. The set
{0} contains only the zero vector is a subset of Rm which is called the trivial
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subspace. The whole set Rm is also a subset of Rm. A vector subspace of R3

is either the trivial subspace {0}, a line passing through 0, a plane containing
0 or the whole R3.

Now we introduce the notions of linear independency and spanning set.

Definition 1.3.19 (Linearly independent vectors and spanning set). Let
V ⊂ Rm be a vector subspace and E = {v1,v2,. . . ,vk} ⊂ V be a set of
vectors in V .

1. We say that E is linearly independent if

c1v1 + c2v2 + · · ·+ ckvk = 0

implies c1 = c2 = · · · = ck = 0.

2. We say that E spans V if for any v ∈ V , there exists scalars α1, α2,. . . ,αk∈
R such that

v = α1v1 + α2v2 + · · ·+ αkvk.

A set E of vectors in V is linearly independent if the zero vector 0 can
not be written as a linearly combination of vectors in E in a nontrivial way,
meaning that not all coefficients are zero. We say that v1,v2, . . . ,vk are
linearly dependent if they are not linearly independent. In other words,
v1,v2, . . . ,vk are linearly dependent if there exists scalars c1, c2, . . . , ck not
all zero such that

c1v1 + c2v2 + · · ·+ ckvk = 0.

Proposition 1.3.20. Let V ⊂ Rm be a vector subspace and E = {v1,v2, . . . ,vk} ⊂
V be a set of vectors in V . Then E is linearly dependent if and only if there
exists vi ∈ E which can be written as a linear combination of other vectors
in E, that is,

vi = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk

for some α1, . . . , αi−1, αi+1, . . . , αk ∈ R.

Proof. Suppose E is linearly dependent. Then there exists c1, . . . , ck, not all
zero, such that

c1v1 + c2v2 + · · ·+ ckvk = 0.
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Let 1 ≤ i ≤ k be such that ci 6= 0. Then

vi = −c1

ci
v1 − · · · −

ci−1

ci
vi−1 −

ci+1

ci
vi+1 − · · · −

ck
ci

vk

is a linear combination of other vectors in E.
Suppose there exists vi ∈ E such that

vi = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk

for some α1, . . . , αi−1, αi+1, . . . , αk ∈ R. Then

α1v1 + · · ·+ αi−1vi−1 − vi + αi+1vi+1 + · · ·+ αkvk = 0

and the coefficient of vi is −1 which is nonzero. Therefore E is linearly
dependent.

The above proposition implies in particular that a set E of vectors in V is
linearly dependent if there exists distinct vectors u,v ∈ E such that v = αu
for some α ∈ R. Furthermore if 0 ∈ E, then E is linearly dependent.

Proposition 1.3.21. Let V ⊂ Rm be a vector subspace and E ⊂ V be a set
of vectors in V . Suppose the vectors in E are

1. mutually orthogonal, that is, 〈u,v〉 = 0 for any distinct u,v ∈ E, and

2. nonzero, that is, v 6= 0 for any v ∈ E.

Then E is linearly independent.

Proof. Let E = {v1, . . . ,vk} ⊂ V . Suppose

c1v1 + c2v2 + · · ·+ ckvk = 0.

For any 1 ≤ i ≤ k, we have

c1〈vi,vi〉+ c2〈vi,v2〉+ · · ·+ ck〈vi,vk〉 = 〈vi,0〉
ci〈vi,vi〉 = 0

which implies ci = 0 since vi 6= 0. Thus ci = 0 for any 1 ≤ i ≤ k. Therefore
E is linearly independent.
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Proposition 1.3.22. Let V ⊂ Rm be a vector subspace and

E = {v1,v2, . . . ,vk} ⊂ V

be a set of vectors in V .

1. Suppose E is linearly independent. Then

(i) any subset of E is linearly independent.

(ii) if E does not span V , then there exists vk+1 ∈ V such that

F = E ∪ {vk+1} = {v1, . . . ,vk,vk+1}

is linearly independent.

2. Suppose E spans V . Then

(i) any set of vectors which contains E spans V .

(ii) if E is not linearly independent, then there exists vi ∈ E such that

D = E\{vi} = {v1, . . . ,vi−1,vi+1, . . . ,vk}

spans V .

Proof. 1. Suppose E is linearly independent.

(i) Let D ⊂ E. We may assume D = {v1, . . . ,vr} where r ≤ k.
Suppose

c1v1 + · · ·+ crvr = 0.

Then
c1v1 + · · ·+ crvr + 0vr+1 + · · ·+ 0vk = 0.

Since E is linearly independent, we have c1 = c2 = · · · = cr = 0.
Therefore D is linearly independent.

(ii) If E does not span V , then there exists vk+1 ∈ V which is not a
linear combination of vectors in E. Suppose

c1v1 + · · ·+ ckvk + ck+1vk+1 = 0.

Then ck+1 = 0 for otherwise

vk+1 = − c1

ck+1

v1 − · · · −
ck
ck+1

vk
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is a linear combination of vectors in E which contradicts the choice
of vk+1. Thus

c1v1 + · · ·+ ckvk = 0

which implies c1 = · · · = ck = 0. Therefore F = E ∪ {vk+1} is
linearly independent.

2. Suppose E spans V .

(i) Let F ⊂ V be a set of vectors with E ⊂ F . For any v ∈ V , v is
a linear combination of vectors in F because E ⊂ F and E spans
V . Thus F spans V .

(ii) If E is not linearly independent, then by Proposition 1.3.20, there
exists vi ∈ E such

vi = α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk.

Now for any v ∈ V , since E spans V , there exists β1, . . . , βk ∈ R
such that

v = β1v1 + · · ·+ βivi + · · ·+ βkvk

= β1v1 + · · ·+ βi−1vi−1

+βi(α1v1 + · · ·+ αi−1vi−1 + αi+1vi+1 + · · ·+ αkvk)

+βi+1vi+1 + · · ·+ βkvk

= (β1 + βiα1)v1 + · · ·+ (βi−1 + βiαi−1)vi−1

+(βi+1 + βiαi+1)vi+1 + · · ·+ (βk + βiαk)vk

Therefore any vectors in V can be expressed as a linear combina-
tion of vectors in D = E\{vi} which means D spans V .

Definition 1.3.23 (Basis). Let V ⊂ Rm be a vector subspace and E =
{v1,v2,. . . ,vn} ⊂ V be a set of vectors in V . We say that E constitutes a
basis for V if

1. E is linearly independent, and

2. E spans V .



Towards Differential Geometry 26

Example 1.3.24 (Standard basis). The set B = {e1, e2, . . . , en} where

e1 = (1, 0, 0, . . . , 0, 0)

e2 = (0, 1, 0, . . . , 0, 0)
...

en = (0, 0, 0, . . . , 0, 1)

constitutes a basis for Rm and is called the standard basis.

Theorem 1.3.25. Let V ⊂ Rm be a vector subspace and E = {v1,v2, . . . ,vn} ⊂
V be a set of vectors in V . Then the following conditions are equivalent.

1. E constitutes a basis for V .

2. For any v ∈ V , there exists unique α1, α2, · · · , αn ∈ R such that

v = α1v1 + α2v2 + · · ·+ αnvn.

Proof. Suppose E constitutes a basis for V . For any v ∈ V , since E spans
V , there exists α1, . . . , αn such that

v = α1v1 + α2v2 + · · ·+ αnvn.

To prove that such coefficients α1, . . . , αn are unique, suppose β1, . . . , βn ∈ R
are scalars such that

v = β1v1 + β2v2 + · · ·+ βnvn.

By considering the difference of the two equalities, we have

(α1 − β1)v1 + (α2 − β2)v2 + · · ·+ (αn − βn)vn = 0.

Since E is linearly independent, we must have

α1 − β1 = α2 − β2 = · · · = αn − βn = 0

which means the expression of v as a linear combination of v1, . . . ,vn is
unique.

Suppose for any v ∈ V , there exists unique α1, · · · , αn ∈ R such that

v = α1v1 + α2v2 + · · ·+ αnvn.
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It is obvious that E spans V . To prove that E is linearly independent,
suppose

c1v1 + c2v2 + · · ·+ cnvn = 0.

Since
0 = 0v1 + 0v2 + · · ·+ 0vn,

we have c1 = c2 = · · · = cn = 0 by uniqueness of expression of 0 as a linearly
combination of E. Thus E is linearly independent. Therefore B constitutes
a basis for V .

The following proposition says that the number of vectors in any set of
linearly independent vectors in a vector subspaces V is always less than or
equal to the number of vectors in a spanning set for V .

Proposition 1.3.26. Let V ⊂ Rm be a vector subspace. Suppose E =
{u1,u2, . . . ,ur} ⊂ V spans V and F = {v1,v2, . . . ,vs} ⊂ V is linearly
independent. Then r ≥ s.

Proof. Suppose E = {u1, . . . ,ur} spans V and F = {v1, . . . ,vs} be any set
of s vectors in V . Suppose r < s. It suffices to prove that F must be linearly
dependent. Since E spans V , any vector vj ∈ S ⊂ V is a linear combination
of vectors in E and we may write

vj = a1ju1 + a2ju2 + · · ·+ arjur

for some a1j, · · · , arj ∈ R. Collect the above equalities and write them in
matrix form as

(
v1 v2 · · · vs

)
=
(

u1 u2 · · · ur
)


a11 a12 · · · a1s

a21 a22 · · · a2s
...

...
. . .

...
ar1 ar2 · · · ars

 .

By Proposition 1.1.11, there exists c1, . . . , cs ∈ R, not all zero, such that
a11 a12 · · · a1s

a21 a22 · · · a2s
...

...
. . .

...
ar1 ar2 · · · ars




c1

c2
...
cs

 =


0
0
...
0

 .
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Then

c1v1 + c2v2 + · · ·+ csvs

=
(

v1 v2 · · · vs
)


c1

c2
...
cs



=
(

u1 u2 · · · ur
)


a11 a12 · · · a1s

a21 a22 · · · a2s
...

...
. . .

...
ar1 ar2 · · · ars




c1

c2
...
cs



=
(

u1 u2 · · · ur
)


0
0
...
0


= 0

and at least one of c1, . . . , cs is nonzero. Therefore F is linearly dependent
and the proof of the proposition is complete.

The above proposition has an important consequence that any two bases
for V contain the same number of vectors.

Theorem 1.3.27. Let V ⊂ Rm be a vector subspace. Suppose E = {u1,u2, . . . ,ur} ⊂
V and F = {v1,v2, . . . ,vs} ⊂ V are two bases for V . Then r = s.

Proof. Since E spans V and F is linearly independent, we have r ≥ s by
Proposition 1.3.26. Since F spans V and E is linearly independent, we have
s ≥ r again by Proposition 1.3.26. Therefore we have r = s.

This allows us to define the dimension of V .

Definition 1.3.28 (Dimension). Let V be a vector subspace of Rm. The
dimension of V is the number of vectors in a basis for V and is denoted by
dim(V ).

Example 1.3.29.
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1. The trivial subspace V = {0} has dimension dim(V ) = 0. The empty
set E = ∅, which contains zero vector, is a basis for V = {0}.

2. The subspace V = Rm has dimension dim(V ) = m. The standard basis,
which contains n vectors, is a basis for V = Rm.

In particular, a basis for Rm must contain exactly m vectors.

Theorem 1.3.30. Let V ⊂ Rm be a vector subspace and F ⊂ V be a set of
vectors in V . Then

1. F is linearly independent if and only if F is contained in a basis for V .

2. F spans V if and only if F contains a basis for V .

Proof. Suppose dim(V ) = n.

1. If F ⊂ E is contained in a basis E for V , then F is linearly independent
since E is linearly independent (Proposition 1.3.22).

Conversely suppose F is linearly independent. If F spans V , then F is
a basis for V and we are done. If F does not span V , then there exists
v 6∈ F such that F1 = F ∪ {v} is linearly independent (Proposition
1.3.22). Repeat this process and get subsets F ⊂ F1 ⊂ F2 ⊂ · · · . Since
a set of linearly independent vectors in V contains at most dim(V ) = n
vectors (Proposition 1.3.26), the process stops in finitely many steps
and we obtain a basis for V .

2. If F contains a basis E for V , then F spans V since E spans V (Propo-
sition 1.3.22).

Suppose F spans V . Let E ⊂ F be a subset of F which is linearly
independent. If E spans V , then E is a basis contained in F and we
are done. If E does not span V , then there exists v ∈ F which is not
a linear combination of vectors in E. Then E1 = E ∪ {v} is linearly
independent. Repeat this process and get subsets E ⊂ E1 ⊂ E2 ⊂
· · · . Since a set of linearly independent vectors in V contains at most
dim(V ) = n vectors (Proposition 1.3.26), the process stops in finitely
many steps and we obtain a basis for V .
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If the dimension of a vector subspace is known, it is easier to determine
whether a set of vectors constitutes a basis.

Theorem 1.3.31. Let V ⊂ Rm be a vector subspace with dimension dim(V ) =
n and F = {v1,v2, . . . ,vn} ⊂ V be a set of n vectors in V . Then the follow-
ing conditions are equivalent.

1. F constitutes a basis for V .

2. F is linearly independent.

3. F spans V .

Proof. It suffices to prove that F spans V if and only if F is linearly inde-
pendent.

Suppose F spans V . Then there exists a basis E, which contains n vectors
since dim(V ) = n, such that E ⊂ F (Theorem 1.3.30). Hence we must have
F = E since F contains n vectors by assumption. Therefore F constitutes a
basis for V .

Suppose F is linearly independent. Then there exists a basis E, which
contains n vectors since dim(V ) = n, such that F ⊂ E (Theorem 1.3.30).
Hence we must have F = E since F contains n vectors by assumption.
Therefore F constitutes a basis for V .

Proposition 1.3.32. Let u,v,w ∈ R3 be three vectors in R3. The following
conditions are equivalent.

1. u,v,w are linearly independent.

2. 〈u,v ×w〉 6= 0

We say that an n×n matrix A is nonsingular if it satisfies the equivalent
conditions in the following theorem. We say that A is singular if it is not
nonsingular, that is, det(A) = 0.

Theorem 1.3.33. The following conditions for n×n matrix A are equivalent.

1. det(A) 6= 0

2. A is invertible, that is, the inverse A−1 of A exists.

3. For any n column vector b, the equation Ax = b has a unique solution
for x.
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4. The homogeneous equation Ax = 0 has no nontrivial solution, that is,
solution for which x 6= 0.

5. The column vectors of A constitute a basis for Rm.

Proof. (1)⇒(2). Proposition 1.2.11.
(2)⇒(3). Suppose A is invertible. Then Ax = b if and only if x = A−1b.
Therefore Ax = b has a unique solution x = A−1b for any b ∈ Rm.
(3)⇒(4). Obvious by taking b = 0.
(4)⇒(5). Let a1, a2, . . . , an be the column vectors of A. If the homogeneous
equation Ax = 0 has only trivial solution x = 0, then

c1a1 + c2a2 + · · ·+ cnan = 0

only when c1 = c2 = · · · = cn = 0. Thus a1, a2, . . . , an are linearly inde-
pendent which implies a1, a2, . . . , an constitute a basis for Rm by Theorem
1.3.31.
(5)⇒(1). Theorem 1.3.31.

In the last part of this section, we study vector valued function. Suppose
v(t) for t ∈ (a, b) is a vector valued function, that means, v is a function
from open interval (a, b) to R3. We may write v(t) = (x(t), y(t), z(t)) where
x(t), y(t), z(t) are ordinary real valued functions. Thus giving a vector valued
function is the same as giving three real valued function. Similar to ordinary
function, we say that v(t) is differentiable if the limit

dv

dt
= lim

∆t→0

v(t+ ∆t)− v(t)

∆t

exists and the limit is called the derivative of v(t) and is denoted by dv
dt

or
v′(t). It is not difficult to see that v(t) is differentiable if and only if all three
functions x(t), y(t), z(t)) are differentiable. We have the following rules for
derivative of vector valued functions which can be proved by the properties
of derivatives of ordinary functions.

Proposition 1.3.34 (Rules for derivative of vector valued functions). Let
u(t),v(t),w(t) be differentiable vector valued functions and α(t) be real valued
function.

1.
d

dt
(u + v) =

du

dt
+
dv

dt
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2.
d

dt
(αv) = α

dv

dt
+
dα

dt
v

3.
d

dt
〈u,v〉 = 〈du

dt
,v〉+ 〈u, dv

dt
〉

4.
d

dt
(u× v) =

du

dt
× v + u× dv

dt

5.
d

dt
〈u,v ×w〉 = 〈du

dt
,v ×w〉+ 〈u, dv

dt
×w〉+ 〈u,v × dw

dt
〉

The following lemma will be used from time to time in these notes and
therefore we include the proof here.

Lemma 1.3.35. Let u(t) and v(t) be two vector valued functions.

1. If 〈u(t),v(t)〉 is constant, then for any t, we have

〈u′(t),v(t)〉 = −〈u(t),v′(t)〉.

2. If ‖v(t)‖ is constant, then for any t, we have

〈v′(t),v(t)〉 = 0.

Proof. Differentiate 〈u(t),v(t)〉 = C, where C is constant, with respect to t,
we have

〈u′(t),v(t)〉+ 〈u(t),v′(t)〉 = 0

and the first statement follows readily. The second statement is obtained by
taking u(t) = v(t).

1.4 Orthogonal matrices and rigid transformations

An important interpretation of matrices is that they associate naturally with
linear transformation.

Definition 1.4.1 (Linear transformation). A function L : Rn → Rm is called
a linear transformation if for any u,v ∈ Rn and α, β ∈ R, then

L(αu + βv) = αL(u) + βL(v)
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Example 1.4.2 (Linear transformations associated with matrices). Let A
be an m× n matrix. Define a function LA : Rn → Rm by

LA(v) = Av

for v = (v1, v2, . . . , vn)T . Here we use the column vector notation where v
is an n column vector and Av is an m column vector. Then LA is a linear
transformation which is called the linear transformation associated with A.

Conversely for any linear transformation L : Rn → Rm, if we take

A = [L(e1), . . . , L(en)]

where e1, . . . , en are n column vectors in the standard basis for Rn, then
LA = L where LA is the linear transformation associated with A. Thus we
have

Proposition 1.4.3 (Matrix representation of linear transformation). Let
L : Rn → Rm be a linear transformation. Then there is an m× n matrix A
such that LA = L where LA is the linearly transformation associated with A.
The matrix A is called the matrix representation of L.

Therefore there is a one-to-one correspondence between m × n matrices
and linear transformations from Rn to Rm. The following proposition says
that the matrix multiplication associates with composition of linear trans-
formations. This is one of the major reasons why matrix multiplication is
defined in such a way.

Proposition 1.4.4. Let A and an k × m matrix and B be an m × n ma-
trix. Let LA and LB be the linear transformation associated with A and B
respectively. Then the matrix representing LA ◦ LB is AB. In other words,

LAB = LA ◦ LB.

Next we consider an important class of 3× 3 matrices which correspond
to rotation in R3.

Definition 1.4.5 (Orthogonal and special orthogonal matrix). Let Q be an
n× n matrix.

1. We say that Q is an orthogonal matrix if Q−1 = QT where QT is
the transpose of Q.
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2. We say that Q is a special orthogonal matrix if Q is an orthogonal
matrix and det(Q) = 1.

Definition 1.4.6 (Orthonormal basis). Let V ⊂ Rm be a vector subspace.
We say that a set E = {v1,v2, . . . ,vn} of vectors constitutes an orthonor-
mal basis for V if they satisfy the following conditions.

1. E constitutes a basis for V .

2. E is mutually orthogonal, that is, 〈vi,vj〉 = 0 whenever i 6= j.

3. E consists of unit vectors, that is, ‖vi‖ = 1 for i = 1, 2, . . . , n.

Proposition 1.4.7. The following conditions for an n × n matrix Q are
equivalent.

1. Q is an orthogonal matrix.

2. The column vectors of Q constitute an orthonormal basis for Rn.

3. For any u,v ∈ Rn,
〈Qu, Qv〉 = 〈u,v〉

4. For any v ∈ Rn,
‖Qv‖ = ‖v‖

Note that if Q is an orthogonal matrix, then det(Q) = ±1. If det(Q) = 1,
that is, Q is a special orthogonal matrix, then Q corresponds to a rotation
in Rn. If det(Q) = −1, then Q corresponds to a reflection composites with a
rotation in Rn.

Proposition 1.4.8. Suppose Q is a special 3× 3 orthogonal matrix.

1. For any u,v ∈ R3, we have

Q(u× v) = Qu×Qv.

2. For any u,v,w ∈ R3, we have

〈Qu, Qv ×Qw〉 = 〈u,v ×w〉.
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Proof. First we prove (2). For any u,v ∈ R3, we have

〈Qu, Qv ×Qw〉 = det([Qu, Qv, Qw])

= det(Q[u,v,w])

= det(Q) det([u,v,w])

= det([u,v,w])

= 〈u,v ×w〉.

Now we use (2) to prove (1). Let u,v ∈ R3. For any w ∈ R3, we have

〈w, Q(u× v)〉 = 〈QQ−1w, Q(u× v)〉
= 〈Q−1w,u× v〉 (Proposition 1.4.7)

= 〈QQ−1w, Qu×Qv〉 (by (2))

= 〈w, Qu×Qv〉

Therefore Q(u× v) = Qu×Qv by Proposition 1.3.5.

Definition 1.4.9 (Rigid transformation). A rigid transformation of Rn

is a function T : Rn → Rn of the form

T (v) = Qv + a

for some n × n orthogonal matrix Q and constant vector a ∈ Rn. If fur-
thermore det(Q) = 1, that is, Q is a special orthogonal matrix, we say that
T is orientation preserving. If det(Q) = −1, we say that T is orientation
reversing.

Proposition 1.4.10. The following conditions for a function T : R3 → R3

are equivalent.

1. T is a rigid transformation.

2. T preserves distance between two points, that is, for any u,v ∈ R3,

‖T (u)− T (v)‖ = ‖u− v‖

3. T is a composition of a rotation, and/or a translation, and/or a reflec-
tion.
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1.5 Eigenvalues, eigenvectors and diagonalization

Eigenvalues and eigenvectors are important in many aspects in linear algebra.

Definition 1.5.1 (Eigenvalues and eigenvectors). Let A be an n×n matrix.
If λ is a complex number3 and ξ is a non-zero4 complex vector such that

Aξ = λξ,

then we say that λ is an eigenvalue of A and ξ is an eigenvector of A
associated with λ.

To find eigenvalues of a matrix, we need to solve the characteristic equa-
tion.

Definition 1.5.2 (Characteristic polynomial and characteristic equation).
Let A be an n × n matrix. The characteristic polynomial of A is the
degree n polynomial det(xI − A) in x, where I is the identity matrix. The
characteristic equation of A is the degree n polynomial equation

det(xI − A) = 0.

Note that the equality Aξ = λξ is equivalent to (λI − A)ξ = 0. Now
λ is an eigenvalue of A if and only if there exists nonzero vector ξ such
that (λI − A)ξ = 0 which is equivalent to det(λI − A) = 0. To find an
eigenvector associated with the eigenvalue λ, one needs to find ξ 6= 0 such
that (λI − A)ξ = 0.

Proposition 1.5.3. Let A be an n× n matrix.

1. A complex number λ is an eigenvalue of A if and only if λ is a root to
the characteristic equation det(xI − A) = 0.

2. Let λ be an eigenvalue of A. Then ξ is an eigenvector of A associated
with λ if and only if ξ 6= 0 and (λI − A)ξ = 0.

Note that a polynomial equation of degree n has at least one complex
root and at most n distinct root. We have

3The set of complex numbers is C = {a + bi : a, b ∈ R} where i2 = −1. Note that a
real number is also a complex number. Even when the matrix is real, we would consider
complex eigenvalues and eigenvectors.

4Eigenvalue of a matrix may be 0 but eigenvector is by definition a non-zero vector.
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Proposition 1.5.4. An n× n matrix has at least one eigenvalue and has at
most n distinct eigenvalues.

Next we discuss diagonalization of matrices.

Definition 1.5.5. Let A and B be n × n matrices. We say that A and B
are similar if there exists invertible matrix P such that

P−1AP = B.

Proposition 1.5.6. Similarity of matrices satisfies the following properties.

1. (Reflexive) For any A, we have A is similar to A.

2. (Symmetric) If A is similar to B, then B is similar to A.

3. (Transitive) If A is similar to B and B is similar to C, then A is
similar to C.

In mathematics, we say that a relation is an equivalence relation if it
is reflexive, symmetric and transitive. Thus similarity of matrices defines an
equivalence relations on the set of n× n matrices.

Proposition 1.5.7. Suppose A and B are similar n× n matrices. Then

1. A and B have the same characteristic polynomial.

2. λ is an eigenvalue of A if and only if it is an eigenvalue of B.

3. det(A) = det(B)

4. tr(A) = tr(B)

Proof. Suppose A and B are similar. Then there exists invertible matrix P
such that B = P−1AP .

1. Since

det(xI −B) = det(xI −P−1AP ) = det(P−1(xI −A)P ) = det(xI −A),

the characteristic polynomials of A and B are the same.

2. The statement follows easily by the fact that the eigenvalues of a ma-
trix is exactly the roots of the characteristic polynomial of the matrix
(Proposition 1.5.3).
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3. det(B) = det(P−1AP ) = det(P )−1 det(A) det(P ) = det(A)

4.

tr(B) = tr(P−1AP )

= tr(APP−1) (Proposition 1.2.13)

= tr(A)

Definition 1.5.8 (Diagonalization). An n× n matrix A is diagonalizable
if there exists invertible matrix P such that

P−1AP = D

is a diagonal matrix and we say that P diagonalizes A. In other words, a
matrix A is diagonalizable if and only if A is similar to a diagonal matrix.

A matrix P diagonalizes A if and only if the column vectors of P are
linearly independent eigenvectors of A.

Proposition 1.5.9. let A be an n× n matrix and P = [ξ1, ξ2, . . . , ξn] where
ξ1, ξ2, . . . , ξn are column vectors of P . Then the following statements are
equivalent.

1. P is invertible and P−1AP = D where

D =


λ1

λ2
0

. . .

0 λn

 .

2. The vectors ξ1, ξ2, . . . , ξn are linearly independent eigenvectors of A
associated with λ1, λ2, . . . , λn respectively.

Proof. Observe that

AP = PD

⇔ [Aξ1, Aξ2, . . . , Aξn] = [λ1ξ1, λ2ξ2, . . . , λnξn]

⇔ Aξi = λiξi for i = 1, 2, . . . , n

Therefore P−1AP = D if and only if ξ1, ξ2, . . . , ξn are linearly independent
eigenvectors of A associated with λ1, λ2, . . . , λn respectively.
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To diagonalize a matrix A, we need to find all eigenvalues of A and as
many linearly independent eigenvectors as possible for each eigenvalue. For
each eigenvalue λ, the number of linearly independent eigenvectors associ-
ated with λ cannot be larger than the multiplicity of λ as a root of the
characteristic equation.

Definition 1.5.10 (Algebraic and geometric multiplicity of eigenvalue). Let
A be an n× n matrix and λ be an eigenvalue of A.

1. The algebraic multiplicity ma(λ) of λ is the multiplicity of λ as a
root of the polynomial equation det(xI−A) = 0, that means the largest
positive integer k such that det(xI − A) is divisible by (x− λ)k.

2. The geometric multiplicity mg(λ) of λ is maximum number of lin-
early independent eigenvectors associated with λ.

The algebraic and geometric multiplicity of an eigenvalue satisfies the
following inequality.

Proposition 1.5.11. Let A be an n × n matrix and λ be an eigenvalue
of A. Let ma(λ) be the algebraic multiplicity and mg(λ) be the geometric
multiplicity of λ. Then we have

1 ≤ mg(λ) ≤ ma(λ) ≤ n.

Proof. There is at least one eigenvector ξ associated with λ and eigenvector
is by definition nonzero. Thus we have mg(λ) ≥ 1. On the other hand,
the characteristic equation is of degree n and thus we have ma(λ) ≤ n.
Suppose mg(λ) = k. Then there exists k linearly independent eigenvectors
ξ1, ξ2, . . . , ξk ∈ Cn of A associated with λ. We are going to prove that the
algebraic multiplicity of λ satisfies ma(λ) ≥ k. Now there exists (Theorem
1.3.30) n − k vectors vk+1, . . . ,vn ∈ Cn such that ξ1, . . . , ξk,vk+1, . . . ,vn
constitute a basis for Cn. Using these vectors as column vectors, the n × n
matrix

P = [ξ1, . . . , ξk,vk+1, . . . ,vn]

is nonsingular (Theorem 1.3.33). Consider the matrix B = P−1AP which
must be of the form

B =

(
λI C
0 D

)



Towards Differential Geometry 40

where I is the k × k identity matrix, 0 is the (n − k) × k zero matrix, C is
a k × (n− k) matrix and D is an (n− k)× (n− k) matrix. Note that since
A and B are similar, the characteristic equation of A and B are the same
(Proposition 1.5.7). Observe that

det(xI −B) =

∣∣∣∣ (x− λ)I −C
0 xI −D

∣∣∣∣ = (x− λ)k det(xI −D).

We see that the algebraic multiplicity of λ as root of the characteristic equa-
tion of B is as least k and therefore the algebraic multiplicity of λ as root of
the characteristic equation of A is as least k.

Note that by fundamental theorem of algebra5, the sum of algebraic
multiplicities of all eigenvalues of an n× n matrix is n.

Theorem 1.5.12. Let A be an n × n matrix and λ1, λ2, . . . , λk be distinct
eigenvalues of A. Suppose ξ1, ξ2, . . . , ξk are eigenvectors associated with
λ1, λ2, . . . , λk respectively. Then ξ1, ξ2, . . . , ξk are linearly independent. More
generally, suppose

E = {ξ11, . . . , ξ1m1 , ξ21, . . . , ξ2m2 , . . . , ξk1, . . . , ξkmk
}

are vectors such that for each i = 1, 2, . . . , k,

Ei = {ξi1, . . . , ξimi
}

is a set of linearly independent eigenvectors associated with λi. Then the
vectors in E are linearly independent.

Proof. We prove the first part of the statement by induction on k. When
k = 1, the vector ξ is linearly independent since eigenvector is nonzero by
definition. Assume that any k−1 eigenvectors associated with distinct eigen-
vectors are linearly independent. Let ξ1, . . . , ξk be eigenvectors associated
with distinct eigenvalues λ1, . . . , λk. Suppose

c1ξ1 + c2ξ2 + · · ·+ ckξk = 0.

Multiplying A− λkI from the left to both sides, we have

c1(A− λkI)ξ1 + · · ·+ ck−1(A− λkI)ξk−1 + ck(A− λkI)ξk = 0

c1(λ1 − λk)ξ1 + · · ·+ ck−1(λk−1 − λk)ξk−1 = 0.

5One way of stating the fundamental theorem of algebra is that the sum of the multi-
plicities of all roots of a polynomial equation of degree n is n.
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By induction hypothesis, the vectors ξ1, . . . , ξk−1 are linearly independent
which implies ci(λi−λk) = 0 for any i = 1, 2, . . . , k−1. Now λi−λk 6= 0 for i 6=
k since λ1, . . . , λk are distinct. Hence we have ci = 0 for i = 1, 2, . . . , k−1. It
follows that ckξk = 0 which implies ck = 0 since ξk 6= 0 being an eigenvector.
Therefore ξ1, . . . , ξk are linearly independent.

For the more general statement, suppose

η1 + η2 + · · ·+ ηk = 0

where
ηi = ci1ξi1 + · · ·+ cimi

ξimi

for i = 1, 2, . . . , k. Observe that Aηi = λiηi, and by the first part of the
proof, we must have

η1 = η2 = · · · = ηk = 0.

Note that ξi1, . . . , ξimi
are linearly independent which implies ci1 = ci2 =

· · · = cimi
= 0. Therefore the vectors in E are linearly independent.

Theorem 1.5.13. Let A be an n×n matrix. Then the following statements
are equivalent.

1. A is diagonalizable.

2. There exists n linearly independent eigenvectors of A.

3. For each eigenvalue λ of A, we have mg(λ) = ma(λ) where mg(λ)
and mg(λ) are the geometric multiplicity and algebraic multiplicity of
λ respectively.

Proof. The first two statements are equivalent by Proposition 1.5.9. We
are going to prove that (2) and (3) are equivalent. Let λ1, . . . , λk be all
eigenvalues of A. Suppose there exists n linearly independent eigenvectors
of A for which mi of them are associated with λi for 1 ≤ i ≤ k. Then
mi ≤ mg(λi) by definition of mg and thus

n = m1 +m2 + · · ·+mk

≤ mg(λ1) +mg(λ2) + · · ·+mg(λk)

≤ ma(λ1) +ma(λ2) + · · ·+ma(λk) (Proposition 1.5.11)

= n (Fundamental theorem of algebra).
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Therefore mg(λi) = ma(λi) for any i = 1, 2, . . . , k.
Suppose for each i = 1, 2, . . . , k, we have mg(λi) = ma(λi) and let

ξi1, . . . , ξimi
, where mi = mg(λi) = ma(λi) be linearly independent eigen-

vectors associated with λi. Then by Theorem 1.5.12, the vectors

ξ11, . . . , ξ1m1 , ξ21, . . . , ξ2m2 , . . . , ξk1, . . . , ξkmk

are linearly independent. By fundamental theorem of algebra, we have

m1 + · · ·+mk = ma(λ1) + · · ·+ma(λk) = n.

Therefore we have n linearly independent eigenvectors which implies A is
diagonalizable.

In particular, we have

Proposition 1.5.14. Let A be an n × n matrix. Suppose A has n distinct
eigenvalues. Then A is diagonalizable.

Note that the converse of the above theorem is false. That is, a diagonal-
izable n× n matrix may have less than n distinct eigenvalues.

Theorem 1.5.15 (Cayley-Hamilton theorem). Let A be an n×n matrix and
p(x) = det(xI − A) be its characteristic polynomial. Then p(A) = 0.

Proof. Let B = xI − A and

p(x) = det(B) = xn + cn−1x
n−1 + · · ·+ c1x+ c0

be the characteristic polynomial of A. Consider B = xI − A as an n × n
matrix whose entries are polynomial in x. Write the adjugate adj(B) of B
as a polynomial of degree n− 1 in x with matrix coefficients

adj(B) = Bn−1x
n−1 + · · ·+B1x+B0

where the coefficients Bi are n×n constant matrices. On one hand, we have

det(B)I = (xn + cn−1x
n−1 + · · ·+ c1x+ c0)I

= Ixn + cn−1Ix
n−1 + · · ·+ c1Ix+ c0I.

One the other hand, we have

Badj(B) = (xI − A)(Bn−1x
n−1 + · · ·+B1x+B0)

= Bn−1x
n + (Bn−2 − ABn−1)xn−1 + · · ·+ (B0 − AB1)x− AB0.
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Comparing the coefficients of

det(B)I = Badj(B),

we get

I = Bn−1

cn−1I = Bn−2 − ABn−1

...

c1I = B0 − AB1

c0I = −AB0.

Now we multiply the first equation by An, the second equation by An−1, and
so on, and the last one by I. Then adding up the resulting equations, we
obtain

p(A) = An + cn−1A
n−1 + · · ·+ c1A+ c0I

= AnBn−1 + (An−1Bn−2 − AnBn−1) + · · ·+ (AB0 − A2B1)− AB0

= 0.

1.6 Self-adjoint operator

Self-adjoint operators are linear operators which satisfy 〈L(u),v〉 = 〈u, L(v)〉.
They form an important class of linear operators. To understand them, we
need to extend our studies in the previous sections to vector space over C,
complex inner product space and linear operators on these spaces.

Definition 1.6.1 (Inner product). The inner product of two vectors w, z ∈
Cn is defined by

〈w, z〉 = w1z1 + w2z2 + · · ·+ wnzn

for w = (w1, w2, . . . , wn), z = (z1, z2, . . . , zn) ∈ Cn.

Inner product has the following properties.

Proposition 1.6.2 (Properties of inner product). Let u,v,w ∈ Cn and
α, β ∈ C. Then
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1. (Linear in first argument):

〈αu + βv,w〉 = α〈u,w〉+ β〈v,w〉

2. (Conjugate symmetric):

〈v,u〉 = 〈u,v〉

3. (Positive definite):
〈v,v〉 ≥ 0

with equality holds if and only if v = 0.

Note that by linearity in first argument and conjugate symmetry, inner
product is conjugate linear in the second argument, that is,

〈w, αu + βv〉 = α〈w,u〉+ β〈w,v〉.

A subset V ⊂ Cm is a complex vector subspace if 0 ∈ V and for any u,v ∈ V ,
α, β ∈ C, we have

αu + βv ∈ V.

A linear operator on a complex vector subspace V ⊂ Cm is a function L :
V → V such that for any u,v ∈ V , α, β ∈ C, we have

L(αu + βv) = αL(u) + βL(v).

A linear operator on a n dimensional vector subspace V ⊂ Cm can be repre-
sented by a n× n matrix with respect to a basis for V . When we talk about
matrix representation, we need to specify the order of vectors in the basis.
We called a basis E = (v1, . . . ,vn) whose vectors are ordered an ordered
basis.

Definition 1.6.3 (Matrix representation of linear operator). Let V ⊂ Cm

be a vector subspace with dimension dim(V ) = n and L : V → V be a linear
operator on V . Let E = (u1, . . . ,un) be an ordered basis for V . Then for
each j = 1, 2, . . . , n, we may write

L(uj) = a1ju1 + a2ju2 + · · ·+ anjun
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for some complex numbers a1j, a2j, . . . , anj ∈ C. We say that the n×n matrix

AE = [aij] =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


is a matrix representation of L with respect to the ordered basis E.

One may write the equalities

L(uj) = a1ju1 + a2ju2 + · · ·+ anjun

for j = 1, 2, . . . , n, as

L(u1, . . . ,un) = (u1, . . . ,un)AE.

The matrix representation AE has the following interpretation. For any
v ∈ V , if we write

v = α1u1 + α2u2 + · · ·+ αnun,

then
L(v) = β1u1 + β2u2 + · · ·+ βnun

where  β1
...
βn

 = AE

 α1
...
αn

 .

We may choose different bases for V and obtain different matrix represen-
tations of L. However, two matrix representations of a linear operator are
always similar.

Proposition 1.6.4. Let V ⊂ Cm be a vector subspace with dim(V ) = n
and L : V → V be a linear operator on V . Let E = (u1, . . . ,un) and
F = (v1, . . . ,vn) be two ordered basis for V . Let AE and AF be the matrix
representation of L with respect to bases E and F respectively. Then AE and
AF are similar matrices.
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Proof. We need to find an invertible matrix P such that AF = P−1AEP . We
may write

L(u1, . . . ,un) = (u1, . . . ,un)AE

and
L(v1, . . . ,vn) = (v1, . . . ,vn)AF .

For each j = 1, 2, . . . , n, write

vj = p1ju1 + p2ju2 + · · ·+ pnjun,

where p1j, . . . , pnj ∈ C which can be written as

(v1, . . . ,vn) = (u1, . . . ,un)P

where P = [pij]. Note also that

(v1, . . . ,vn)P−1 = (u1, . . . ,un).

Thus we have

L(v1, . . . ,vn) = L((u1, . . . ,un)P )

= L(u1, . . . ,un)P

= (u1, . . . ,un)AEP

= (v1, . . . ,vn)P−1AEP.

This means AF = P−1AEP . Therefore AE and AF are similar.

Proposition 1.6.5. Let V ⊂ Cm be a linear operator and L : V → V be
a linear operator on V . Let E and F be two ordered bases for V . Suppose
AE and AF are the matrix representations of L with respect to E and F
respectively. Then the following statements holds.

1. AE and AF have the same characteristic polynomial.

2. AE and AF have the same set of eigenvalues.

3. det(AE) = det(AF )

4. tr(AE) = tr(AF )

The above proposition allows us to define the determinant and trace of a
linear operator.
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Definition 1.6.6 (Determinant and trace of linear operator). Let V ⊂ Cm

be a vector subspace with dim(V ) = n and L : V → V be a linear operator
on V . The determinant and trace of L is the determinant and trace of a
matrix representation of L respectively.

Definition 1.6.7 (Eigenvalues and eigenvectors of linear operators). Let
V ⊂ Cm be a vector subspace and L : V → V be a linear operator. Suppose
λ ∈ C and ξ ∈ V is a nonzero vector such that

L(ξ) = λξ.

Then we say that λ is an eigenvalue of L and ξ is an eigenvector of L
associated with λ.

It is not difficult to see that λ is an eigenvalue of L if and only if λ is an
eigenvalue of the matrix representation AE. In fact

ξ = α1u1 + α2u2 + · · ·+ αnun

is an eigenvector of L associated with λ if and only if (α1, . . . , αn) ∈ Cn is
an eigenvector of AE associated with λ.

Definition 1.6.8 (Self-adjoint operator). Let V ⊂ Cm be a complex vector
subspace and L : V → V be a linear operator on V . We say that L is
self-adjoint if for any u,v ∈ V , we have

〈L(u),v〉 = 〈u, L(v)〉.

Let’s study the matrix representation of a self-adjoint operator. For com-
plex matrix, it is more natural to consider conjugate transpose in stead trans-
pose.

Definition 1.6.9 (Conjugate transpose). Let A = [aij] be an n× n complex
matrix. The conjugate transpose of A is defined by

A∗ = A
T
.

In other words, the ij-th entry of the conjugate transpose A∗ of A is

[A∗]ij = aji.
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A linear operator is self-adjoint if and only if its matrix representation
with respect to an orthonormal basis is Hermitian.

Definition 1.6.10 (Hermitian and unitary matrix). Denote by A∗ = A
T

the
conjugate transpose of an n× n complex matrix A.

1. An n× n matrix H is said to be Hermitian if H∗ = H.

2. An n×n matrix U is said to be unitary if U is invertible and U∗ = U−1.

Proposition 1.6.11. Let V ⊂ Cm be a complex vector subspace and E be an
ordered orthonormal basis. Let L : V → V be a linear operator on V . Then
L is self-adjoint if and only if the matrix representation AE of L with respect
to E is Hermitian.

Proof. Let E = (u1, . . . ,un) be an ordered orthonormal basis. Suppose the
matrix representation of L with respect to E is AE = [aij]. Now for i =
1, 2, . . . , n,

L(ui) = a1iu1 + a2iu2 + · · ·+ aniun.

Since E is an orthonormal basis, we have

〈L(ui),uj〉 = 〈a1iu1 + a2iu2 + · · ·+ aniun,uj〉 = aji

and similarly

〈ui, L(uj)〉 = 〈ui, a1ju1 + a2ju2 + · · ·+ anjun〉 = aij.

Now if L is self-adjoint, we have aji = aij for any 1 ≤ i, j ≤ n which means
AE is Hermitian.

Conversely if AE is Hermitian, then aji = aij which implies 〈L(ui),uj〉 =
〈ui, L(uj)〉 for any 1 ≤ i, j ≤ n. Then it follows readily that L is self-
adjoint.

Let λ and ξ be eigenvalue and eigenvectors of a self-adjoint operator L.
Then the image under L of a vector orthogonal to ξ is orthogonal to ξ.

Theorem 1.6.12. Let V ⊂ Cm be a vector subspace and L : V → V be
a self-adjoint operator. Let ξ be an eigenvector of L. Then for any vector
η ∈ V with 〈ξ,η〉 = 0, we have 〈ξ, L(η)〉 = 0.



Towards Differential Geometry 49

Proof. 1. Suppose 〈ξ,η〉 = 0. Then

〈ξ, L(η)〉 = 〈L(ξ),η〉
= 〈λξ,η〉
= λ〈ξ,η〉
= 0

Definition 1.6.13 (Orthogonal complement). Let V ⊂ Cm be a vector sub-
space and W ⊂ V be a vector subspace of V . The orthogonal complement
of W in V is defined by

W⊥ = {w⊥ ∈ V : 〈w,w⊥〉 = 0 for any w ∈ W}

Proposition 1.6.14. Let V ⊂ Cm be a vector subspace with det(V ). Let
W ⊂ V be a vector subspace of V and W⊥ be the orthogonal complement of
W in V . Then

1. W ∩W⊥ = {0}

2. For any v ∈ W , there exists unique decomposition

v = w + w⊥

such that w ∈ W and w⊥ ∈ W⊥.

3. dim(W ) + dim(W⊥) = dim(V )

Proof. 1. Suppose v ∈ W ∩W⊥. Then v ∈ W and v ∈ W⊥ which implies
〈v,v〉 = 0. Thus we must have v = 0. Therefore W ∩W⊥ = {0}.

2. Suppose v ∈ V . By extreme value theorem6, there exists w ∈ W
such that ‖v − w‖ ≤ ‖v − z‖ for any z ∈ W . Let w⊥ = v − w.
Suppose there exist z ∈ W such that 〈z,w⊥〉 6= 0. By replacing z by

6The extreme value theorem says that if f is a continuous function defined on a closed
and bounded set D and f is bounded from below, then f attains its minimum on D. That
means there exists z ∈ D such that f(z) ≤ f(x) for any x ∈ D.
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its multiple, we may assume that 〈z,w⊥〉 = α > 0 and ‖z‖ = 1. Note
that w + αz ∈ W and

‖v − (w + αz)‖2 = ‖w⊥ − αz‖2

= ‖w⊥‖2 − 〈αz,w⊥〉 − 〈w⊥, αz〉+ ‖αz‖2

= ‖w⊥‖2 − α2 − α2 + |α|2

= ‖w⊥‖2 − α2

which contradicts the construction of w that ‖v−z‖ ≥ ‖v−w‖ = ‖w⊥‖
for any z ∈ W .. Hence we have 〈z,w⊥〉 = 0 for any z ∈ W . This means
w⊥ ∈ W⊥ and v = w + w⊥ is the required decomposition.

To prove uniqueness, suppose

v = w + w⊥ = z + z⊥

where w, z ∈ W and w⊥, z⊥ ∈ W⊥. Then

w − z = z⊥ −w⊥

is a vector which lies in both W and W⊥. The vector w−z = z⊥−w⊥

lies in both W and W⊥ which implies w − z = z⊥ − w⊥ = 0 by (1).
Therefore the decomposition v = w + w⊥ is unique.

3. Let w1, . . . ,wp ∈ W be a basis for W and w⊥1 , . . . ,w
⊥
q ∈ W⊥ be a

basis for W⊥. For any v ∈ V , by (2) there exists unique decomposition
v = w+w⊥ where w ∈ W and w⊥ ∈ W⊥. Then there exists constants
α1, . . . , αp, β1, . . . , βq ∈ C such that

v = w + w⊥

= α1w1, · · · , αpwp + β1w
⊥
1 , . . . , βqw

⊥
q .

On the other hand, the vectors w1, . . . ,wp,w
⊥
1 , . . . ,w

⊥
q are linearly in-

dependent since they are nonzero mutually orthogonal vectors (Propo-
sition 1.3.21), and thus constitute a basis for V . It follows that p+q = n
which means dim(W ) + dim(W⊥) = dim(V ).

Theorem 1.6.15 (Spectral theorem for self-adjoint operator). Let V ⊂ Cm

be a vector subspace and L : V → V be a linear operator on V . Then the
following statements hold.
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1. All eigenvalues of L are real.

2. There exists eigenvectors ξ1, ξ2, . . . , ξn of L which constitute an or-
thonormal basis for V .

Proof. 1. Suppose ξ is an eigenvector of L which means ξ 6= 0 and L(ξ) =
λξ where λ ∈ C.

λ〈ξ, ξ〉 = 〈λξ, ξ〉
= 〈L(ξ), ξ〉
= 〈ξ, L(ξ)〉
= 〈ξ, λξ〉
= λ〈ξ, ξ〉

Since ξ 6= 0, we have λ = λ which means λ is real.

2. We prove the statement by induction on dim(V ). Suppose dim(V ) = 1.
Let ξ ∈ V be a unit vector. Then L(ξ) = λξ for some scalar λ since
dim(V ) = 1. Thus ξ constitutes a basis for V .

Assume that the statement holds for any vector subspace of dimension
k. Let V ⊂ Cm be a subspace with dim(V ) = k + 1. By fundamental
theorem of algebra, the characteristic polynomial of L has at least one
root λ ∈ C. Then λ is an eigenvalue of L which means there exists unit
vector ξ0 ∈ V such that L(ξ0) = λξ0. Let

W = {w ∈ V : w = αξ0 for some α ∈ C}

and
W⊥ = {w⊥ ∈ V : 〈ξ0,w

⊥〉 = 0}
be the orthogonal complement of W in V which is of dimension k by
Proposition 1.6.14. By Theorem 1.6.12, we have L(w⊥) ∈ W⊥ for any
w⊥ ∈ W⊥. Thus the restriction L|W⊥ : W⊥ → W⊥ of L on W⊥ can be
considered a linear operator on W⊥. It is not difficult to see that L|W⊥

is self-adjoint. Note that dim(W⊥) = k. By induction hypothesis,
there exists eigenvectors ξ1, . . . , ξk ∈ W⊥ of L|W⊥ which constitute a
basis for W⊥. Now ξ0, ξ1, . . . , ξk, ξk+1 ∈ V are eigenvectors of L which
constitute an orthonomal basis for V . This completes the induction
step and the proof of the theorem.
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Theorem 1.6.16 (Spectral theorem for Hermitian matrices). Let H be an
n× n Hermitian matrix. Then the following statements hold.

1. All eigenvalues of H are real.

2. There exists an orthonormal basis for Cn which consists of eigenvectors
of H.

3. There exists special unitary matrix U which diagonalizes H, that is,
U∗HU is a diagonal matrix.

Proof. Let LH : Cn → Cn be the linear operator defined by LH(v) = Hv,
where we consider v as column vector. Then LH is represented by the matrix
H with respect to the standard basis. Thus LH is a self-adjoint operator since
H is Hermitian (Proposition 1.6.11). By spectral theorem (Theorem 1.6.15),
all eigenvalues of LH are real and there exists orthonormal basis ξ1, . . . , ξn
for Cn consisting of eigenvectors of LH which are also eigenvectors of H.
This proves the first two statements. For the third statement, note that the
matrix U = [ξ1, . . . , ξn] diagonalizes H (Proposition 1.5.9). Since ξ1, . . . , ξn
constitute an orthonormal basis, U is a unitary matrix. One may multiply
a suitable complex number to the first column of U making its determinant
equals to one and keeping the matrix unitary. Then the resulting matrix is
a special unitary matrix which diagonalizes H.

Note that a real matrix is Hermitian if and only if it is symmetric and is
unitary if and only if it is orthogonal. Thus we have the following spectral
theorem for real symmetric matrices.

Theorem 1.6.17 (Spectral theorem for real symmetric matrices). Let S be
an n× n real symmetric matrix. Then the following statements hold.

1. All eigenvalues of S are real.

2. There exists an orthonormal basis for Rn which consists of eigenvectors
of S.

3. There exists special orthogonal matrix Q which diagonalizes S, that is,
QTSQ is a diagonal matrix.
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1.7 Some transcendental functions

In this section, we discuss the most basic transcendental functions namely,
exponential function, logarithmic function, trigonometric functions and hy-
perbolic functions. We will give the definitions, list some basic identities,
and do some calculus on them.

Definition 1.7.1. The exponential function, logarithmic function, trigono-
metric functions and hyperbolic functions are defined as follows.

1. Exponential function:

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · · for x ∈ R

2. Trigonometric functions: There are 6 trigonometric functions which
are defined as follows.

Cosine: cosx =
∞∑
k=0

(−1)kx2k

(2k)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · · for x ∈ R

Sine: sinx =
∞∑
k=0

(−1)kx2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · · for x ∈ R

Tangent: tanx =
sinx

cosx
for x 6= (2k + 1)π

2
, k ∈ Z

Cotangent: cotx =
cosx

sinx
for x 6= kπ, k ∈ Z

Secant: secx =
1

cosx
for x 6= (2k + 1)π

2
, k ∈ Z

Cosecant: cscx =
1

sinx
for x 6= kπ, k ∈ Z

3. Hyperbolic functions: There are 6 hyperbolic functions which are
defined as follows.
Hyperbolic cosine:

coshx =
ex + e−x

2
=
∞∑
k=0

x2k

(2k)!
= 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · · for x ∈ R
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Hyperbolic sine:

sinhx =
ex − e−x

2
=
∞∑
k=0

x2k+1

(2k + 1)!
= x+

x3

3!
+
x5

5!
+
x7

7!
+ · · · for x ∈ R

Hyperbolic tangent:

tanhx =
sinhx

coshx
for x ∈ R

Hyperbolic cotangent:

cothx =
coshx

sinhx
for x 6= 0

Hyperbolic secant:

sechx =
1

coshx
for x ∈ R

Hyperbolic cosecant:

cschx =
1

sinhx
for x 6= 0

The exponential function can be interpreted as a certain limit which can
be used as an alternative definition.

Theorem 1.7.2. The exponential function satisfies

ex = lim
n→∞

(
1 +

x

n

)n
for any x ∈ R.

Another important transcendental function is logarithm which is the in-
verse of the exponential function. Note that the exponential function has the
property that for any x > 0, there exists a unique y ∈ R such that ey = x.

Definition 1.7.3 (Logarithmic function). The logarithmic function is the
function ln : R+ → R defined for x > 0 by

y = lnx if ey = x.

In other words, lnx is the inverse function of the exponential function.
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The transcendental functions satisfy the following identities.

Proposition 1.7.4 (Identities for transcendental functions).

1. Exponential function:

(a) ex+y = exey

(b) ex−y =
ex

ey

(c) ekx = (ex)k for k ∈ Z

2. Logarithmic function:

(a) ln(xy) = lnx+ ln y

(b) ln
x

y
= lnx− ln y

(c) ln(xk) = k lnx for k ∈ Z

3. Trigonometric identities:

(a) cos2 x+ sin2 x = 1; sec2 x− tan2 x = 1; csc2 x− cot2 x = 1

(b) cos(−x) = cos x; sin(−x) = − sinx; tan(−x) = − tanx

(c) cos(x+ y) = cos x cos y − sinx sin y;

sin(x+ y) = sinx cos y + cosx sin y;

tan(x+ y) =
tanx+ tan y

1− tanx tan y

(d) cos 2x = cos2 x− sin2 x = 2 cos2 x− 1 = 1− 2 sin2 x;

sin 2x = 2 sin x cosx;

tan 2x =
2 tanx

1− tan2 x

4. Hyperbolic identities:

(a) cosh2 x− sinh2 x = 1; sech2x+ tanh2 x = 1; coth2 x− csch2x = 1

(b) cosh(−x) = cosh x; sinh(−x) = − sinhx; tanh(−x) = − tanhx

(c) cosh(x+ y) = cosh x cosh y + sinhx sinh y;

sinh(x+ y) = sinhx cosh y + coshx sinh y;

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
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(d) cosh 2x = cosh2 x+ sinh2 x = 2 cosh2 x− 1 = 1 + 2 sinh2 x;

sinh 2x = 2 sinh x coshx;

tanh 2x =
2 tanhx

1 + tanh2 x

Proposition 1.7.5 (Derivatives of transcendental functions).

1. Exponential function:
d

dx
ex = ex

2. Logarithmic function:
d

dx
lnx =

1

x

3. Trigonometric functions:

d

dx
cosx = − sinx;

d

dx
sinx = cosx;

d

dx
tanx = sec2 x;

d

dx
cotx = − csc2 x;

d

dx
secx = secx tanx;

d

dx
cscx = − cscx cotx

4. Inverse trigonometric functions7:

d

dx
cos−1 x = − 1√

1− x2
;

d

dx
sin−1 x =

1√
1− x2

;

d

dx
tan−1 x =

1

1 + x2

7Here we define the inverse trigonometric functions as follows.

(a) cos−1 : [−1, 1] → [0, π]: For x ∈ [−1, 1], y = cos−1 x is the unique value 0 ≤ y ≤ π
such that cos y = x.

(b) sin−1 : [−1, 1]→ [−π2 ,
π
2 ]: For x ∈ [−1, 1], y = sin−1 x is the unique value −π2 ≤ y ≤

π
2 such that sin y = x.

(c) tan−1 : R→ (−π2 ,
π
2 ): For x ∈ R, y = tan−1 x is the unique value −π2 < y < π

2 such
that tan y = x.
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5. Hyperbolic functions:

d

dx
coshx = sinhx;

d

dx
sinhx = coshx;

d

dx
tanhx = sech2x;

d

dx
cothx = −csch2x;

d

dx
sechx = −sechx tanhx;

d

dx
cschx = −cschx cothx

6. Inverse hyperbolic functions8:

d

dx
cosh−1 x =

1√
x2 − 1

;

d

dx
sinh−1 x =

1√
x2 + 1

;

d

dx
tanh−1 x =

1

1− x2

Proposition 1.7.6 (Integrals of transcendental functions).

1. Exponential function: ∫
exdx = ex + C

2. Logarithmic function: ∫
1

x
dx = ln |x|+ C

8The inverse hyperbolic functions can be expressed in terms of logarithm as follows.

(a) cosh−1 : [1,+∞)→ [0,+∞): cosh−1 x = ln(x+
√
x2 − 1).

(b) sinh−1 : R→ R: sinh−1 x = ln(x+
√
x2 + 1).

(c) tanh−1 : (−1, 1)→ R: tanh−1 x = 1
2 ln( 1+x

1−x ).
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3. Trigonometric functions:∫
cosxdx = sinx+ C;

∫
sinxdx = − cosx+ C;∫

tanxdx = ln sec x;

∫
cotx = ln sin x+ C;∫

secxdx = ln | secx+ tanx|+ C;

∫
cscxdx = ln | cscx− cotx|+ C

4. Hyperbolic functions:∫
coshxdx = sinhx+ C;

∫
sinhxdx = coshx+ C;∫

tanhxdx = ln cosh x;

∫
cothx = ln sinh x+ C;∫

sechxdx = tan−1 sinhx+ C;

∫
cschxdx = ln |cschx− cothx|+ C

Exercise 1

1. Let u,v ∈ Rn. Prove the polarization identity

〈u,v〉 =
1

4

(
‖u + v‖2 − ‖u− v‖2

)
2. Let u,v ∈ R3. Prove that if 〈u,w〉 = 〈v,w〉 for any w ∈ R3, then

u = v.

3. Prove that for any u,v ∈ R3, we have u × v is orthogonal to both u
and v.

4. Prove that for any u,v ∈ R3, we have

‖u× v‖2 + 〈u,v〉2 = ‖u‖2‖v‖2

5. Let u(t),v(t) be two differentiable vector valued functions. Prove that

d

dt
〈u,v〉 = 〈du

dt
,v〉+ 〈u, dv

dt
〉



Towards Differential Geometry 59

6. Let v(t) be a differentiable vector valued function. Suppose ‖v‖ is a

constant independent of t. Prove that
dv

dt
is orthogonal to v for any t.

7. Let u,v,w ∈ R3.

(a) Prove that

〈u× (v ×w),x〉 = 〈u,w〉〈v,x〉 − 〈u,v〉〈w,x〉

for any x ∈ R3. (Hint: use 〈u1×v1,u2×v2〉 =

∣∣∣∣ 〈u1,u2〉 〈u1,v2〉
〈v1,u2〉 〈v1,v2〉

∣∣∣∣)
(b) Prove that

u× (v ×w) = 〈u,w〉v − 〈u,v〉w

(c) Prove the Jacobi identity

u× (v ×w) + v × (w × u) + w × (u× v) = 0

8. Let Q = [v1,v2,v3] be a 3× 3 matrix where v1,v2,v3 are the column
vectors of Q. Show that Q is an orthogonal matrix, that is Q−1 = QT

if and only if v1,v2,v3 constitute an orthonormal basis for R

9. Let A be an n× n matrix.

(a) Prove that
〈u, Av〉 = 〈ATu,v〉

for any u,v ∈ Rn.

(b) Prove that if
〈Au, Av〉 = 〈u,v〉

for any u,v ∈ Rn, then A is an orthogonal matrix.

10. Prove the following hyperbolic identities.

(a) cosh2 x− sinh2 x = 1

(b) cosh(x+ y) = cosh x cosh y + sinhx sinh y

(c) sinh(x+ y) = cosh x sinh y + sinhx cosh y

11. Prove that
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(a)
d

dx
coshx = sinhx

(b)
d

dx
sinhx = coshx

(c)
d

dx
tanhx =

1

cosh2 x
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2 Curves

2.1 Regular parametrized curves

The subject we are going to study in this chapter is curves in two or three
dimensional Euclidean space. The first problem is how do we define curves.
One may say that curves are one dimensional objects in the Euclidean space.
However it is not easy to define what dimension is for a general subset of
the Euclidean space. Moreover we would also like the curves to be suffi-
ciently smooth. In differential geometry, this is done by considering regular
parametrized curves. Intuitively, it is the trajectory of a moving particle.

Definition 2.1.1 (Regular parametrized curves). A regular parametrized
curve is a differentiable function r : (a, b) → Rn, n = 2 or 3, such that
r′(t) 6= 0 for any t ∈ (a, b).

Figure 1: Regular parametrized curve

In daily language, curve usually refers to a collection of points. Here, by
parametrized curve, we mean a function from an open interval to R2 or R3.
However, if two such functions have the same image, we may also consider
them to be the same as curves and say that the two functions are two different
parametrization of the curve.

One usually requires, though not necessary, the function defining a parametrized
curve to be injective9. However when we consider a closed curve, e.g. a cir-

9A function f is injective if f(x) = f(y) implies x = y. In other words, any two distinct
elements in the domain of f cannot have the same image.
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cle, which has no end points, we will need more than one parametrization
function.

A curve on R2 is called a plane curve and a curve in R3 is called a space
curve. The requirement r′(t) 6= 0 guarantees that the curve does not have
a sharp turning point and tangent to the curve can be defined everywhere.

Example 2.1.2.

1. Straight line: Let (x0, y0) and (x1, y1) be two points on R2. The function

r(t) = ((1− t)x0 + tx1, (1− t)y0 + ty1), for 0 < t < 1

defines a regular plane curve which is a straight line segment joining
(x0, y0) and (x1, y1). Yes, a straight line on the plane is a curve.

Figure 2: Straight line segment

2. Circle: Let r > 0 be a positive real number. The function

r(θ) = (r cos θ, r sin θ), for 0 < θ < 2π

defines a circle with radius r centered at the origin.

3. Cycloid: The function

r(θ) = (θ − sin θ, 1− cos θ), for 0 < θ < 2π

defines a curve which is called a cycloid.
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Figure 3: Circle

Figure 4: Cycloid

4. Helix: The function

r(θ) = (a cos θ, a sin θ, bθ), for θ ∈ R

defines a curve which is called a helix.

The following example illustrates a curve which has an irregular point.

Example 2.1.3. Let r(t) = (t2, t3). Then r′(t) = (2t, 3t2) and r′(0) = (0, 0).
Therefore r(t) is not regular at t = 0.
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Figure 5: Helix

2.2 Arc length

The first geometric quantity associated with a curve we study is its arc length.
It is a generalization of lengths of line segments to curves. The idea is to
cut a curve into n small pieces and approximate each piece with a small line
segment. Then sum up the lengths of the line segments and let n goes to
infinity. This is obtained by an integral.

Definition 2.2.1 (Arc length). Let r : (a, b)→ Rn be a regular parametrized
curve. Then the arc length of r is defined by

l =

∫ b

a

‖r′(t)‖dt.

The first thing we check is that arc length is really a generalization of
length of line segment.

Example 2.2.2 (Arc length of line segments). Let

r(t) = ((1− t)x0 + tx1, (1− t)y0 + ty1), 0 < t < 1,
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be the line segment joining (x0, y0) and (x1, y1). Now

r′(t) = (x1 − x0, y1 − y0)

‖r′(t)‖ =
√

(x1 − x0)2 + (y1 − y0)2

Thus the arc length of r is∫ 1

0

‖r′(t)‖dt =

∫ 1

0

√
(x1 − x0)2 + (y1 − y0)2dt

=
√

(x1 − x0)2 + (y1 − y0)2

which is exactly the length of line segment joining (x0, y0) and (x1, y1).

The arc length of a circle of radius r is known to be 2πr even for primary
students. Now may give a rigorous proof for this simple fact.

Example 2.2.3 (Arc length of circles). Let r(θ) = (r cos θ, r sin θ), 0 < θ <
2π, be the circle with radius r > 0 centered at the origin. Now

r′(t) = (−r sin θ, r cos θ)

‖r′(t)‖ =
√
r2 sin2 θ + r2 cos2 θ

= r

Thus the arc length of r is∫ 2π

0

‖r′(t)‖dt =

∫ 2π

0

rdt

= 2πr

Proposition 2.2.4 (Arc length of graphs of functions).

1. (Rectangular coordinates): The arc length of the curve given by the
graph of function y = f(x), a < x < b, in rectangular coordinates is

l =

∫ b

a

√
1 + f ′2dx.

2. (Polar coordinates): The arc length of the curve given by the graph of
function r = r(θ), α < θ < β, in polar coordinates is

l =

∫ β

α

√
r2 + r′2dθ.
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Proof. 1. Parametrized the graph of y = f(x) by r(t) = (t, f(t)), a < t <
b. Then

r′(t) = (1, f ′)

‖r′(t)‖ =
√

1 + f ′2

Therefore the arc length is

l =

∫ b

a

‖r′(t)‖dt =

∫ b

a

√
1 + f ′2dx.

2. Parametrized the graph of r = r(θ) by r(θ) = (r(θ) cos θ, r(θ) sin θ),
α < θ < β. The rest is left for the reader as exercise.

Definition 2.2.5 (Arc length parametrization). We say that r(s) is an arc
length parametrized curve, or r(s) is parametrized by arc length, if
‖r′(s)‖ = 1 for any s.

Using arc length parametrization has a lot of advantage. For example, it
makes calculating the arc length of a curve very easy.

Proposition 2.2.6. Let r(s), be an arc length parametrized curve. Then for
a < b, the arc length of r(s) from s = a to s = b is b− a.

Proof. Since r(s) is an arc length parametrization, we have ‖r′(s)‖ = 1.
Therefore the arc length from s = a to s = b is∫ b

a

‖r′(s)‖ds =

∫ b

a

ds = [s]ba = b− a.

There are many other geometric quantities which are easier to be calcu-
lated using arc length parametrization. We may also use arc length parametriza-
tion to prove certain statements concerning curves because it always exists
and is unique.

Theorem 2.2.7 (Existence and uniqueness of arc length parametrization).
Let r(t) be a regular parametrized curve. Then there exists increasing differ-
entiable function s = s(t) such that when r(s) is considered as a function of
s, it is an arc length parametrized curve. Moreover if s1(t) and s2(t) are two
such functions, then s2 − s1 is a constant.
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Proof. Let

s(t) =

∫ t

α

‖r′(u)‖du.

By fundamental theorem of calculus, we have s′(t) = ‖r′(t)‖. Then when
r(s) is considered as a function of s and by chain rule, we obtain

dr

dt
=
ds

dt

dr

ds
= ‖r′(t)‖dr

ds
.

Thus
dr

ds
is an unit vector which means r(s) is an arc length parametrization.

Suppose s1(t), s2(t) are two increasing differentiable functions such that
r(s1) and r(s2) are arc length parametrizations. Then

ds2

dt

dr

ds2

=
dr

dt
=
ds1

dt

dr

ds1

which implies ∣∣∣∣ds2

dt

∣∣∣∣ =

∣∣∣∣ds1

dt

∣∣∣∣ .
Since both s1(t), s2(t) are increasing functions, we have

ds2

dt
=

ds1

dt
and it

follows that s2 − s1 is a constant.

To find the arc length parametrization of r(t), we do the following three
steps.

1. Find the arc length s(t) as a function of t by

s(t) =

∫ t

a

‖r(u)‖du.

2. Express t = t(s) in terms of s. In other words, make t the subject in
s = s(t).

3. Substitute t(s) into t in r(t) to get the arc length parametrization r(s).

Example 2.2.8 (Arc length parametrization of helix). Let a, b > 0 be con-
stants. Find an arc length parametrization of the helix r(θ) = (a cos θ, a sin θ, bθ).
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Solution. We have

r′(θ) = (−a sin θ, a cos θ, b)

‖r′(θ)‖ =
√
a2 + b2

If we let c =
√
a2 + b2 and

s(θ) =

∫ θ

0

‖r′(t)‖dt =

∫ θ

0

cdt = cθ,

then
θ =

s

c

and

r(s) =

(
a cos

s

c
, a sin

s

c
,
b

c
s

)
is an arc length parametrization of the helix. �

Example 2.2.9 (Arc length parametrization of catenary). Find an arc length
parametrization of the catenary r(t) = (t, cosh t).

Solution. We have

r′(t) = (1, sinh t)

‖r′(θ)‖ =
√

1 + sinh2 t = cosh t

Let

s(t) =

∫ t

0

‖r′(u)‖du =

∫ t

0

coshudu = sinh t,

then
t = sinh−1 s = ln(s+

√
s2 + 1)

and

r(s) = (ln(s+
√
s2 + 1), cosh ln(s+

√
s2 + 1))

= (ln(s+
√
s2 + 1), cosh t)

= (ln(s+
√
s2 + 1),

√
s2 + 1)

is an arc length parametrization of the catenary. �
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Example 2.2.10 (Tractrix). The tractrix is a curve parametrized by

r(t) = (secht, t− tanh t), t > 0.

Find the arc length parametrization of the tractrix.
Note: The tractrix may also be parametrized by

r(θ) =

(
sin θ, ln

(
cot

θ

2

)
− cos θ

)
, 0 < θ <

π

2
.

Suppose L is the tangent to the tractrix at r(θ) and P is the point of inter-
section of L and the y-axis. Then the angle between L and the y-axis is θ
and the distance between r(θ) and P is always 1.

Figure 6: Tractrix

Solution. We have

r′(t) = (−secht tanh t, 1− sech2t) = (−secht tanh t, tanh2 t)

‖r′(t)‖ = tanh t
√

sech2t+ tanh2 t = tanh t.
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Thus the arc length function is

s(t) =

∫ t

0

tanhudu

=

∫ t

0

sinhu

coshu
du

=

∫ t

0

d coshu

coshu

= [ln coshu]t0
= ln cosh t

Thus
es = cosh t.

Now

x(s) = secht

=
1

cosh t
= e−s

y(s) = t− tanh t

= cosh−1 es −
√

1− sech2t

= ln(es +
√
e2s − 1)−

√
1− e−2s.

Therefore the arc length parametrization is

r(s) = (e−s, ln(es +
√
e2s − 1)−

√
1− e−2s), s > 0.

�

Although arc length always exists for any curve, it is in general very dif-
ficult to write it down explicitly.

We conclude this section by proving a simple geometric fact that straight
line is the shortest curve joining two given points.

Theorem 2.2.11. Let r(t) be a regular parametrized curve with r(a) = r0

and r(b) = r1. Then the arc length l of the curve from t = a to t = b satisfies

l ≥ ‖r1 − r0‖

with equality holds if and only if r(t) is a line segment joining r0 and r1.
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Proof. Let

a =
r1 − r0

‖r1 − r0‖
.

Since a is a unit vector, we have 〈r′(t), a〉 ≤ ‖r′(t)‖ for any t and the arc
length of the curve satisfies

l =

∫ b

a

‖r′(t)‖dt

≥
∫ b

a

〈r′(t), a〉dt

= 〈r(b)− r(a), a〉
= 〈r1 − r0, a〉
= ‖r1 − r0‖.

The equality holds if and only if

r′(t) = 〈r′(t), a〉a

for any t which means
r′(t) = α(t)a

for some positive valued function α(t). Therefore

r(t) = β(t)a

where β(t) is a differentiable function such that β′(t) = α(t), which implies
that r(t) is a straight line segment.

2.3 Curve curvature

The curvature of a curve describes how rapidly it is bending. To make a
rigorous definition, we need the unit tangent and unit normal vectors to the
curve.

Definition 2.3.1 (Unit tangent and normal vector). Let r(t) be a regular
parametrized curve.

1. The unit tangent vector to the curve at r(t) is defined by

T(t) =
r′(t)

‖r′(t)‖
.
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In particular if r(s) is an arc length parametrization, then

T(s) = r′(s).

2. Suppose T′(t) 6= 0. We define the unit normal vector to the curve
at r(t) by

N(t) =
T′(t)

‖T′(t)‖
.

In particular if r(s) is an arc length parametrization, then

N(s) =
T′(s)

‖T′(s)‖
=

r′′(s)

‖r′′(s)‖
.

Figure 7: Unit tangent and unit normal vector

We give some useful formulas for calculation.

Proposition 2.3.2. Let r(t) be a regular parametrized curve and N(t) be the
unit normal vector. We have

1.
d

dt
‖r′‖ =

〈r′, r′′〉
‖r′‖
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2. T′ =
r′′

‖r′‖
− 〈r

′, r′′〉
‖r′‖3

r′

Proof. 1. We have

d

dt
‖r′‖ =

d

dt

√
〈r′, r′〉

=
〈r′′, r′〉+ 〈r′, r′′〉

2
√
〈r′, r′〉

=
〈r′, r′′〉
‖r′‖

2. We have

T′ =
‖r′‖r′′ − ( d

dt
‖r′‖)r′

‖r′‖2

=
r′′

‖r′‖
− 〈r

′, r′′〉
‖r′‖3

r′

Now we define the curvature of a curve. There are many different ways to
write down its definition. Here we define it as the magnitude of the derivative
of the unit tangent vector with respect to arc length.

Definition 2.3.3 (Curve curvature). Let r(t) be a regular parametrized curve
and T(t) be the unit tangent to the curve at r(t). Then the curvature of the
curve at r(t) is

κ(t) =
‖T′(t)‖
‖r′(t)‖

.

In particular if r(s) is an arc length parametrized curve, the curvature is

κ(s) = ‖T′(s)‖

Curvature is a geometric property which is used to measure how much
‘banding’ a curve has. The first thing we expect is that a curve has zero
curvature if and only if it is a straight line segment.

Proposition 2.3.4. Let r(t) be a regular parametrized curve. Then the cur-
vature satisfies κ(t) = 0 for any a < t < b if and only if r(t) is a straight line
segment joining r0 and r1.
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Proof. Suppose r is a straight line segment. Then

r(t) = a + α(t)b

for some increasing function α(t) and constant vector a, b with ‖b‖ = 1.
Thus

T =
r′

‖r′‖
=

α′b

‖α′b‖
= b

is a constant unit vector which implies T′(t) = 0 for any a < t < b. Therefore

κ(t) =
‖T′(t)‖
‖r′(t)‖

= 0

for any a < t < b.
Conversely, suppose κ(t) = 0 for any a < t < b. Then

T′(t) = 0

for any a < t < b which implies

r′(t)

‖r′(t)‖
= b

is a constant unit vector. Thus

r′(t) = α(t)b

for some positive valued function α(t) and therefore

r(t) = a + β(t)b

where β(t) is a differentiable function such that β′(t) = α(t) and a is a
constant vector. It follows that r is a straight line segment.

Now we give the formula for finding the curvature of plane and space
curves.

Proposition 2.3.5 (Formulas for curvature). Let r(t) be a regular parametrized
curve.

1. Suppose r(t) = (x(t), y(t)) is a plane curve. Then

κ(t) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

.
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2. Suppose r(t) = (x(t), y(t), z(t)) is a space curve. Then

κ(t) =
‖r′ × r′′‖
‖r′‖3

.

Proof. Let r(t) be a regular parametrized curve. Then

T =
r′

‖r′‖

By Proposition 2.3.2,
d

dt
‖r′‖ =

〈r′, r′′〉
‖r′‖

.

Thus we have

T′ =
‖r′‖r′′ − ( d

dt
‖r′‖)r′

‖r′‖2
=
‖r′‖2r′′ − 〈r′, r′′〉r′

‖r′‖3
.

Therefore the curvature is

κ =
‖T′‖
‖r′‖

=

∥∥∥∥‖r′‖2r′′ − 〈r′, r′′〉r′

‖r′‖4

∥∥∥∥ .
1. Suppose r(t) = (x(t), y(t)) is a plane curve. Then

r′ = (x′, y′)

r′′ = (x′′, y′′)

〈r′, r′′〉 = x′x′′ + y′y′′

‖r′‖2r′′ − 〈r′, r′′〉r′ = (x′2 + y′2)(x′′, y′′)− (x′x′′ + y′y′′)(x′, y′)

= (y′2x′′ − x′y′y′′, x′2y′′ − x′y′x′′)
= (x′y′′ − x′′y′)(−y′, x′)

Therefore the curvature of r is

κ =
|x′y′′ − x′′y′|

√
y′2 + x′2

(
√
x′2 + y′2)4

=
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

.
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2. Suppose r(t) = (x(t), y(t), z(t)) is a space curve. Then∥∥‖r′‖2r′′ − 〈r′, r′′〉r′
∥∥2

= 〈‖r′‖2r′′ − 〈r′, r′′〉r′, ‖r′‖2r′′ − 〈r′, r′′〉r′〉
= ‖r′‖4‖r′′‖2 − 2〈r′, r′′〉2‖r′‖2 + 〈r′, r′′〉2‖r′‖2

= ‖r′‖4‖r′′‖2 − 〈r′, r′′〉2‖r′‖2

= ‖r′‖2(‖r′‖2‖r′′‖2 − 〈r′, r′′〉2)

= ‖r′‖2‖r′ × r′′‖2.

Therefore the curvature is

κ =
‖r′‖‖r′ × r′′‖
‖r′‖4

=
‖r′ × r′′‖
‖r′‖3

.

If r(s) is an arc length parametrized curve, we have a simple formula to
calculate the curvature.

Theorem 2.3.6. Suppose r(s) is an arc length parametrized curve. Then

1. κ(s) = ‖r′′(s)‖

2. T′(s) = κ(s)N(s)

Proof. Since r(s) is an arc length parametrization, we have ‖r′(s)‖ = 1 and{
T(s) = r′(s)

T′(s) = r′′(s).

1. Now the curvature is

κ(s) =
‖T′(s)‖
‖r′(s)‖

= ‖r′′(s)‖.

2. We also have

T′(s) = r′′(s) = ‖r′′(s)‖ T′(s)

‖T′(s)‖
= κ(s)N.



Towards Differential Geometry 77

Intuitively, a circle is a curve which is banding in a uniform way. Thus
we expect the curvature at any point of a circle is the same. Moreover the
larger the radius of the circle the smaller the curvature is expected. We are
going to show that the curvature of a circle is uniform and is equal to the
reciprocal of its radius.

Example 2.3.7 (Circle). Let r(θ) = (r cos θ, r sin θ), 0 < θ < 2π, be the
circle of radius r > 0 centered at the origin. Then{

r′(θ) = (−r sin θ, r cos θ)

r′′(θ) = (−r cos θ,−r sin θ)

Thus

κ(θ) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

=
|r2 sin2 θ + r2 cos2 θ|

(r2 cos2 θ + r2 sin2 θ)
3
2

=
1

r
.

Example 2.3.8 (Cycloid). The cycloid is the curve parametrized by

r(θ) = (θ − sin θ, 1− cos θ), for θ ∈ (0, 2π).

Show that the curvature of the cycloid is

κ =
1

2
3
2

√
1− cos θ

.

Proof. Observe that {
r′(θ) = (1− cos θ, sin θ)

r′′(θ) = (sin θ, cos θ)
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Therefore the curvature of the cycloid is

κ(θ) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

=
|(1− cos θ) cos θ − sin θ sin θ|
((1− cos θ)2 + (− sin θ)2)

3
2

=
1− cos θ

(2− 2 cos θ)
3
2

=
1

2
3
2

√
1− cos θ

.

Let’s see some examples of curvature of space curves.

Example 2.3.9 (Helix). Let a, b > 0 be constants. The space curve r(θ) =
(a cos θ, a sin θ, bθ), θ ∈ R, is called a helix. Then{

r′(θ) = (−a sin θ, a cos θ, b)

r′′(θ) = (−a cos θ,−a sin θ, 0)

We have
r′ × r′′ = (ab sin θ,−ab cos θ, a2)

κ(θ) =
‖r′ × r′′‖
‖r′‖3

=
a
√
a+b2

(a2 + b2)
3
2

=
a

a2 + b2

Observe that the curvature is constant in this case.

Proposition 2.3.10 (Curvature of graphs of functions).

1. (Rectangular coordinates): The curvature of the curve given by the
graph of function y = f(x) in rectangular coordinates is

κ(x) =
|f ′′|

(1 + f ′2)
3
2

.
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2. (Polar coordinates): The curvature of the curve given by the graph of
function r = r(θ) in polar coordinates is

κ(θ) =
|r2 + 2r′2 − rr′′|

(r2 + r′2)
3
2

.

Proof. 1. Parametrized the graph of y = f(x) by r(t) = (t, f(t)). Then{
r′(t) = (1, f ′)

r′′(t) = (0, f ′′)

Thus

κ =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

=
|f ′′|

(12 + f ′2)
3
2

2. Parametrized the graph of r = r(θ) by r(θ) = (r cos θ, r sin θ). Then{
r′(θ) = (r′ cos θ − r sin θ, r′ sin θ + r cos θ)

r′′(θ) = (r′′ cos θ − 2r′ sin θ − r cos θ, r′′ sin θ + 2r′ cos θ − r sin θ)

Thus

κ =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

=
|2r′2 − rr′′ + r2|

(r2 + r′2)
3
2

Example 2.3.11 (Catenary). The catenary is the curve given by the graph
of the function y = coshx. Show that the curvature of the catenary is

κ =
1

cosh2 x
.
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Figure 8: Catenary

Proof. Observe that {
f ′(x) = sinh x,

f ′′(x) = cosh x.

By Proposition 2.3.10, the curvature of the catenary is

κ =
|f ′′|

(1 + f ′2)
3
2

=
coshx

(1 + sinh2 x)
3
2

=
coshx

(cosh2 x)
3
2

=
1

cosh2 x

Let’s summarize the above calculation in the following table.
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Parametrized Curve Arc length Curvature
Plane curve

r(t) = (x(t), y(t)),
a < t < b

∫ b

a

‖r′‖dt κ(t) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

Space curve
r(t) = (x(t), y(t), z(t)),

a < t < b

∫ b

a

‖r′‖dt κ(t) =
‖r′ × r′′‖
‖r′‖3

Arc length parametrized curve
r(s) with ‖r(s)‖ = 1

a < s < b
b− a κ(s) = ‖r′′(s)‖

Circle
r(θ) = (r cos θ, r sin θ),

0 < θ < 2π
2πr κ =

1

r

Cycloid
r(θ) = (θ − sin θ, cos θ),

θ ∈ (0, 2π)
8

1

2
3
2

√
1− cos θ

Helix
r(θ) = (a cos θ, a sin θ, bθ),

0 < θ < 2π
2π
√
a2 + b2

a

a2 + b2

Graph of function y = f(z)
in rectangular coordinates

r(t) = (t, f(t)),
a < t < b

∫ b

a

√
1 + f ′2dx

|f ′′|
(1 + f ′2)

3
2

Graph of function r = r(θ)
in polar coordination
r(θ) = (r cos θ, r sin θ),

α < θ < β

∫ β

α

√
r2 + r′2dθ

|r2 + 2r′2 − rr′′|
(r2 + r′2)

3
2

Another way to interpret the curvature of a curve is that is the change of
angle of tangent vector with respect to arc length.

Proposition 2.3.12. Let r(s) be an arc length parametrized plane curve and
θ(s) be the angle between T and positive x-axis. Then

κ(s) =

∣∣∣∣dθds
∣∣∣∣ .

Proof. Suppose r(s) = (x(s), y(s)). Then T = r′ = (x′, y′) and ‖r′‖ =√
x′2 + y′2 = 1. Now

θ = tan−1 y
′

x′
.
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Thus

dθ

ds
=

1

1 + y′2

x′2

(
x′y′′ − y′x′′

x′2

)
= x′y′′ − y′x′′

since x′2 + y′2 = 1. Therefore

κ = |x′y′′ − y′x′′| =
∣∣∣∣dθds
∣∣∣∣ .

This inspires us to give a sign for the curvature.

Definition 2.3.13 (Signed curvature). Let r(t) = (x(t), y(t)) be a regular
parametrized curve. The signed curvature, also denoted by κ, of r is

κ(t) =
dθ

ds
=
x′y′′ − y′x′′

(x′2 + y′2)
3
2

where θ is the angle between the unit tangent vector T and the positive x-axis
so that T = (cos θ, sin θ).

The objects we have studied up to now are open curves. We are going to
explains a theorem which concerns closed curves.

Definition 2.3.14 (Simple closed curve). A regular simple closed curve
in R2 is a closed and bounded connected subset C ⊂ R2 such that for any
point p ∈ C, we may find an open set Up ⊂ R2 containing p such that Up∩C
is the image of a regular parametrized curve.

There is a natural orientation which leads to a natural sign of curvature
on a regular simple closed curve. The Jordan curve theorem asserts that
a simple closed curve in R2 separates the plane into two regions, one bounded
and another unbounded. We say that a regular parametrization of a simple
closed curve is positively oriented if the region bounded by the curve is to
the left of the tangent direction.

On a regular simple closed curve, we may find a positively oriented regular
parametrization r(t), a ≤ t ≤ b, such that r is injective on (a, b) and r(a) =
r(b). Define a function θ(t), a ≤ t ≤ b, which is continuous and θ(t) is the



Towards Differential Geometry 83

angle between the unit tangent vector T(t) and the positive x-axis so that
T = (cos θ, sin θ). The choice of θ(t) is not unique but any two choices are
different by a multiple of 2π. Then since T(a) = T(b), the value θ(b)− θ(a)
must be a multiple of 2π. For regular simple closed curve, we must have
θ(b)− θ(a) = 2π.

Theorem 2.3.15. Let r(t), a ≤ t ≤ b, be a positively oriented regular
parametrization of a regular simple closed curve C such that r(t) is injec-
tive on (a, b) and r(a) = r(b). Let θ(t) be a continuous function such that
θ(t) is the angle between the unit tangent vector T(t) and the positive x-axis
so that T = (cos θ, sin θ). Then θ(b)− θ(a) = 2π.

Sketch of proof. We are going to deform the simple closed curve C. When
we deform the curve, the quantity θ(b) − θ(a) must keep constant. This
is because θ(b) − θ(a) would change continuously when the curve is being
deformed and the quantity only takes integer values which forces it to be
constant. Now a regular simple closed curve can always be deformed regu-
larly into the unit circle. (This is where the assumption that the closed curve
C is simple is being used.) By considering the positive oriented parametriza-
tion r(t) = (cos t, sin t), 0 ≤ t ≤ 2π, of the unit circle, the unit tangent vector
is T(t) = (− sin t, cos t) and we see that an angle function can be chosen to
be θ(t) = t+ π

2
. Now we have θ(2π)−θ(0) = 2π and the proof of the theorem

is complete. �

Signed curvature of a simple closed curve can be considered as the con-
tinuous version of exterior angles of a polygon. The following theorem is the
continuous version of the theorem for sum of exterior angles of polygon.

Theorem 2.3.16. Let C be a simple closed curve and κ be the signed cur-
vature defined by positively oriented parametrization. Then∫

C

κds = 2π.

Sketch of proof. Let r(t), a ≤ t ≤ b be a positively oriented parametrization
of C so that r(t) is injective on (a, b) and r(a) = r(b). Let θ(t) be the angle
between T(t) and positive x-axis which is a continuous function such that

T = (cos θ, sin θ). Now κ =
dθ

ds
and using Theorem 2.3.15, we have∫

C

κds =

∫
C

dθ

ds
ds =

∫
C

dθ = θ(b)− θ(a) = 2π
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�

The curvature of a curve can be interpreted in at least two more ways.
First, a regular parametrized curve r(t) can be considered as the displacement
of a moving particle at time t. Then v = r′ is the velocity of the particle.
We may write the acceleration a = r′′ as a linear combination of orthogonal

vectors T and N. It is known that the projection of a along T is
d‖v‖
dt

and the normal component depends on the velocity of the particle and the
curvature of the curve.

Proposition 2.3.17. Let r(t) be a regular parametrized curve. Then

a = r′′ =
dv

dt
T + κv2N

where v = ‖v‖ = ‖r′‖.

Proof. First, we have
r′(t) = v(t)T(t).

Let s be an arc length parameter, that means s(t) is a function such that
ds

dt
= ‖r′(t)‖. Then

d

ds
T = κN by Theorem 2.3.6 and we have

r′′ =
dv

dt
T + v

d

dt
T

=
dv

dt
T + v

ds

dt

d

ds
T

=
dv

dt
T + κv2N.

In the view of the above proposition, we may also define curvature to be
the normal component of acceleration divided by the square of speed, that
is,

κ(t) =
〈r′′(t),N〉
‖r′(t)‖2

.

There is one more way to interpret the curvature of a curve. When we
consider r(t) as the displacement of a moving particle, we try to find a circle
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which is closest to the trajectory of the particle at a certain point on the
curve. Then the curvature of the curve at that point can be interpreted as
the reciprocal of the radius of that circle.

Let’s summarize the fact about curvature of a curve in the following
proposition.

Proposition 2.3.18. Let r(t) be a regular parametrized curve. Let s(t) be

an arc length parameter, that is,
ds

dt
= ‖r′(t)‖ or equivalently

∥∥∥∥drds
∥∥∥∥ = 1. Let

T and N be the unit tangent and normal vectors, which can be considered as
vector valued functions of t or s, respectively. The curvature κ of the curve
is characterized by any of the following conditions.

1.

κ(t) =
‖T′(t)‖
‖r′(t)‖

2.
dT

ds
= κN

3. If r = (x, y) is a plane curve, we have

κ =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

.

4. If r = (x, y, z) is a space curve, we have

κ =
‖r′ × r′′‖
‖r′‖3

.

5.

κ =

∥∥∥∥d2r

ds2

∥∥∥∥
6. If r = (x, y) is a plane curve and θ is the angle between T and the

positive x-axis, that is, T = (cos θ, sin θ), then we have

κ =
dθ

ds
.

7.

r′′ =
dv

dt
T + κv2N, where v = ‖r′(t)‖.
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2.4 Frenet frame

In this section, we study space curve. We have define unit normal to a curve
by N = T′

‖T′‖ . For space curve, there is one more direction which is orthogonal
to the unit tangent vector which is called binormal.

Definition 2.4.1 (Binormal). Let r(t) be a space curve with curvature κ(t) >
0 for any t. We define the unit binormal to the curve by

B(t) = T(t)×N(t).

Figure 9: Binormal
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Note that T, N, B form a orthonormal basis for R3. This basis depends
on t and we may consider it moving along the curve. We call it the Frenet
frame and this is the simplest example of moving frame. We would like to
study how this frame moves along the curve.

Definition 2.4.2 (Torsion). Let r(t) be a space curve with curvature κ(t) > 0
for any t. The torsion of the curve at r(t) is defined by

τ =

〈
dN

ds
,B

〉
where s is a arc length parameter, which means

ds

dt
= ‖r′(t)‖. Equivalently,

we have

τ(t) =

〈
N′(t)

‖r′(t)‖
,B(t)

〉
Here we give a formula for finding τ .

Proposition 2.4.3. Let r(t) be a space curve with curvature κ(t) > 0 for
any t. Then

τ =
〈r′ × r′′, r′′′〉
‖r′ × r′′‖2

.

Proof. Note that

r′ = ‖r′‖T

r′′ =
d

dt
(‖r′‖T)

=
d‖r′‖
dt

T + ‖r′‖T′

=
〈r′, r′′〉
‖r′‖

T + ‖r′‖(κ‖r′‖N) (Proposition 2.3.2)

=
〈r′, r′′〉
‖r′‖

T + κ‖r′‖2N

So

r′ × r′′ = ‖r′‖T×
(
〈r′, r′′〉
‖r′‖

T + κ‖r′‖2N

)
= κ‖r′‖3T×N

= κ‖r′‖3B
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Thus

‖r′ × r′′‖ = κ‖r′‖3

r′′′ =
d

dt

(
〈r′, r′′〉
‖r′‖

)
T +

〈r′, r′′〉
‖r′‖

T′ +
d

dt

(
κ‖r′‖2

)
N + κ‖r′‖2N′

=
d

dt

(
〈r′, r′′〉
‖r′‖

)
T +

〈r′, r′′〉
‖r′‖

(κN) +
d

dt

(
κ‖r′‖2

)
N + κ‖r′‖2N′

Note that 〈T,B〉 = 〈N,B〉 = 0. Thus

〈r′ × r′′, r′′′〉 = 〈κ‖r′‖3B, κ‖r′‖2N′〉
= κ‖2r′‖5〈N′,B〉

= (κ‖r′‖3)2〈 N′

‖r′‖
,B〉

= ‖r′ × r′′‖2τ

Therefore

τ =
〈r′ × r′′, r′′′〉
‖r′ × r′′‖2

.

Theorem 2.4.4 (Frenet formula). Let r(s) be a regular space curve parametrized
by arc length with curvature κ(s) > 0 for any s. Then

T′(s) = κN
N′(s) = −κT +τB
B′(s) = −τN

We may write the formula in matrix form

d

ds

 T
N
B

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 T
N
B


Proof. First by definition of curvature (Definition 2.3.3), we have

T′(s) = κN.

We are going to use the following fact. If u(t) and v(t) are two vector
valued functions with 〈u,v〉 being constant, then 〈u′,v〉 = −〈u,v′〉 (See
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Lemma 1.3.35). In particular if ‖v‖ is constant, then 〈v′,v〉 = 0. Now since
〈N,T〉 = 0 for any s, we have

〈N′(s),T〉 = −〈N,T′(s)〉
= −〈N, κN〉
= −κ

Moreover since ‖N‖ = 1 is a constant, we have

〈N′(s),N〉 = 0.

Observe that T, N, B constitute an orthonormal basis for R3. We get

N′(s) = 〈N′(s),T〉T + 〈N′(s),N〉N + 〈N′(s),B〉B
= −κT + τB

Applying the same argument to B′(s), we have{
〈B′(s),T〉 = −〈B,T′(s)〉 = 0

〈B′(s),N〉 = −〈B,N′(s)〉 = −τ

since 〈B,T〉 = 〈B,N〉 = 0 and

〈B′(s),B〉 = 0

since ‖B‖ = 1 is constant. Therefore

B′(s) = 〈B′(s),T〉T + 〈B′(s),N〉N + 〈B′(s),B〉B
= −τN

In the last section, we define plane curve as a curve in R2. However, we
would also call a space curve a plane curve if it lies on a plane in R3.

Definition 2.4.5 (Plane curve). We say that a space curve r is a plane
curve if there exists a unit vector n such that

〈r,n〉 = a

is a constant.
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The vector n in the above definition is the unit normal vector of the plane
containing the curve. The curvature κ of a curve measures how far a curve
is away from straight and the torsion τ measure how far it is away from a
plane curve.

Proposition 2.4.6. Let r(t) be a regular parametrized space curve with cur-
vature κ(t) > 0 for any t. Then r is a plane curve if and only if its torsion
τ(t) = 0 for any t.

Proof. By Proposition 2.2.7, we may consider the arc length parametrization
r(s) of the curve. Suppose r(s) is a plane curve. Then there exists constant
unit vector n such that

〈r,n〉 = a

is a constant. Observe that
〈r′(s),n〉 =

d

ds
〈r,n〉 = 0

〈r′′(s),n〉 =
d

ds
〈r′,n〉 = 0

〈r′′′(s),n〉 =
d

ds
〈r′′,n〉 = 0

which implies that 〈r′ × r′′, r′′′〉 = 0. Therefore

τ =
〈r′ × r′′, r′′′〉
‖r′ × r′′‖2

= 0

Conversely Suppose τ(s) = 0 for any s. Then by Frenet formula (Theorem
2.4.4), we have

B′(s) = −τN = 0

for any s. Thus the binormal B is a constant vector and

d

ds
〈r,B〉 = 〈r′,B〉+ 〈r,B′〉

= 〈T,B〉 − τ〈r,N〉
= 0

for any s. Therefore 〈r,B〉 is constant which means r is a plane curve lying
on a plane with normal vector B.
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We end this section by stating the fundamental theorem of space curves
without proof.

Theorem 2.4.7 (Fundamental theorem of space curves). Let κ(s), τ(s) > 0
be two positive functions. Then there exists unique, up to rigid transforma-
tion, space curve r(s) parametrized by arc length with curvature κ(s) and
torsion τ(s).

Exercise 2

1. Write down a regular parametrization of the following curves in R2

(a) The line segment joining (1,−2) and (−3, 2).

(b) The circle of radius 5 centered at (3,−1).

(c) The ellipse with equation x2

4
+ y2

9
= 1.

2. Find the arc-length of the following plane curves.

(a) y = x4+3
6x

from x = 1 to x = 2.

(b) y2 = x3 from (0, 0) to (4, 8).

(c) The astroid defined by x
2
3 + y

2
3 = 1.

(d) The deltoid parametrized by r(θ) = (2 cos θ + cos 2θ, 2 sin θ −
sin 2θ), 0 ≤ θ ≤ 2π.

3. It is given that the following curves are parametrized by arc-length.
Find the value of p where p > 0.

(a) r(θ) = (4 sin pθ,−4 cos pθ, 3pθ)

(b) r(θ) = (p cos θ, 2 + sin θ, 1−
√

3
2

cos θ), for 0 < θ < 2π.

(c) r(t) = (1
3
(1 + t)

3
2 , 1

3
(1− t) 3

2 , pt) for 0 < t < 1.

4. The logarithmic spiral is a curve defined by r = eθ in polar coordinates.

(a) Find the arc-length of the logarithmic spiral from θ = 0 to θ = 2π.

(b) Find the curvature of the logarithmic spiral.
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5. The tractrix is the curve parametrized by

r(θ) =

(
sin θ, cos θ + ln

(
tan

θ

2

))
, for θ ∈ (0,

π

2
).

(a) Show that if the tangent to the tractrix at a point p meet the
y-axis at q, then the distance between p and q is 1.

(b) Show that ‖r′(θ)‖ = cot θ.

(c) Show that the arc length of r(θ) from θ = α to θ = π
2

is − ln sinα.

(d) Show that the curvature of the tractrix is given by κ(θ) = tan θ.

6. Given a circle of radius R and it is rolling along a straight line (which
may be assumed to be the x-axis). Let P be a point on the circum-
ference of the circle of radius R. The curve travelled by the point P ,
i.e., the locus of P , is called a cycloid. Let θ be the angle between the
vertical line (y-axis) and the radius from the center of the circle to P .
The cycloid is parametrized by

r(θ) = (R(θ − sin θ), R(1− cos θ)), for 0 ≤ θ ≤ 2π

(a) Show that r′ is orthogonal to r− (Rθ, 0) and ‖r′‖ = ‖r− (Rθ, 0)‖
for any 0 < θ < 2π.

(b) Find the arc-length of r from θ = 0 to θ = 2π.

(c) Find the curvature of r in terms of θ.

7. Consider the curve C given by the graph of the function y = ln cscx,
0 < x < π, in rectangular coordinates.

(a) Show that r(s) = (2 tan−1 es, ln cosh s), s ∈ R is an arc length
parametrization of C.

(b) Show that the curvature of the curve is

κ(s) =
1

cosh s

8. Prove that the curvature of the curve defined by r = r(θ) in polar
coordinates is given by

κ(θ) =
|2r′2 − rr′′ + r2|

(r2 + r′2)
3
2
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9. Let r(t) = (x(t), y(t)) be a regular parametrized curve. Suppose there

is a differentiable function θ(t) such that tan θ(t) = y′(t)
x′(t)

for any t.
Prove that

dθ

dt
=
x′y′′ − y′x′′

x′2 + y′2

10. Let r(t) be a regular parametrized curve and κ(t) be its curvature.
Prove that if κ(t) = 0 for any t, then r(t) is a straight line.

11. Let r(s) be a regular arc length parametrized plane curve with curva-
ture κ which is a constant.

(a) Prove that
d

ds

(
r(s) +

1

κ
N(s)

)
= 0 where N is the unit normal

vector.

(b) Hence show that r(s) lies on a circle.

12. Let r(s), −1 < s < 1, be an arc length parametrization of a simple

closed curve with curvature κ(s) =
a

1 + s2
where a is a constant. Find

the value of a.

13. The tractrix is the curve parametrized by

r(t) = (secht, t− tanh t), t > 0.

(a) Suppose the tangent at r(t) intercept the y-axis at r0(t). Prove
that the distant between r0(t) and r(t) is constantly equal to 1.

(b) Find an arc length parametrization of the tractrix so that s = 0
corresponds to the point (1, 0).

(c) Show that the curvature of tractrix is

κ = cscht =
1√

e2s − 1
.

14. Let r(t) be a regular parametrized plane curve with κ(t) > 0 for any t.
Let λ > 0 be a constant. The parallel curve rλ of r is defined by

rλ(t) = r(t)− λN(t)

where N(t) is the unit normal vector at N. Show that the curvature of

rλ(t) is
κ

1 + λκ
.
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15. Find the curvature κ(t) and torsion τ(t) of the following space curves
r(t).

(a) r(t) = (4 cos t, 4 sin t, 3t)

(b) r(t) = (cosh t, sinh t, t), t ∈ R

(c) r(t) = (cos3 t, sin3 t, cos 2t), 0 < t <
π

2

16. Let r(t) be a regular parametrized space curve with κ(t) > 0 for any
t. Suppose τ(t) = 0 for any t, where τ(t) is the torsion at r(t). Prove
that r(t) is contained in a plane.

17. Let r(s) be a regular space curve with arc length parametrization, N(s)
and B(s) be the unit normal and unit binormal to the curve respec-
tively. Let κ(s) and τ(s) be the curvature and torsion of the curve.
Suppose r(s) lies on the unit sphere for any s.

(a) Prove that 〈r,N〉 = −1

κ
for any s.

(b) Prove that r = −1

κ
N +

κ′

κ2τ
B.

18. Let r(s) be a regular space curve with arc length parametrization, T(s)
and N(s) be the unit tangent vector and unit normal vector respec-
tively. Suppose κ(s) > 0 for any s and there exists a constant c and a
constant unit vector u such that 〈T(s),u〉 = c for all s.

(a) Show that N(s) and u are orthogonal for all s.

(b) Using (a), show that there exists a constant θ such that

u = cos θT(s) + sin θB(s)

for all s.

(c) Using (b) and the Frenet formulas, or otherwise, prove that
τ(s)

κ(s)
=

cot θ.
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3 Surfaces

3.1 Regular parametrized surfaces

In the last chapter, we study curves by parametrization which is a function
from an open interval (a, b) to R2 or R3. We also require a parametriza-
tion r(t) to be regular, which means r′(t) 6= 0, to ensure that the curve is
sufficiently smooth. Similarly we consider regular parametrized surface.

Definition 3.1.1 (Regular parametrized surface). A regular parametrized
surface is a differentiable function x : D → R3, where D ⊂ R2 is an open
connected subset, such that xu×xv 6= 0, for any (u, v) ∈ D ⊂ R2. The image
S = x(D) ⊂ R3 is called a regular surface.

For x(u, v), we denote xu = ∂x
∂u

and xv = ∂x
∂v

to be the partial derivatives
of x. Note that the condition that both xu 6= 0 and x 6= 0 is not sufficient
for x(u, v) to be regular. We require that xu × xv 6= 0 which geometrically
means that the vectors xu and xv span a nondegenerate parallelogram in R3.

A curve is an one dimensional object and there is only one tangent direc-
tion. A regular surface x(u, v) has infinitely many tangent directions which
includes xu, xv and all their linear combinations.

Definition 3.1.2 (Tangent space). Let S be a regular surface with parametriza-
tion x(u, v). The tangent space of S at p = x(u, v) is

TpS = {αxu + βxv : α, β ∈ R} ⊂ R3.

We call it a ‘space’ because the tangent space is a vector space. In other
words, the tangent TpS satisfies the following condition.

For any u,v ∈ TpS and α, β ∈ R, we have αu + βv ∈ TpS.

Example 3.1.3.

1. Sphere: Let r > 0 be a positive real number. The function

x(φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ), for (φ, θ) ∈ (0, π)× (0, 2π)

defines a sphere of radius r centered at the origin.
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Figure 10: Tangent space

2. Torus: Let R > r > 0 be positive real numbers. The function

x(φ, θ) = ((R+r sinφ) cos θ, (R+r sinφ) sin θ, r cosφ), for φ, θ ∈ (0, 2π)

defines a regular surface which is called torus.

3. Helicoid: Let a > 0 be positive real numbers. The function

x(u, θ) = (u cos θ, u sin θ, aθ), for u, θ ∈ R

defines a regular surface which is called helicoid.

3.2 First fundamental form and surface area

Analogue to the arc length of a curve is the surface area of a surface. To
define surface area, we introduce the first fundamental form.

Definition 3.2.1 (First fundamental form). Let x(u, v) be a regular parametrized
surface. The first fundamental form of x is the 2× 2 matrix valued func-
tion

I =

(
E F
F G

)
=

(
〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

)
.

Here E,F,G are ordinary real valued functions and the first fundamental
form I is a matrix valued function of u, v. Note that I is symmetric because
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Figure 11: Sphere

〈xu,xv〉 = 〈xv,xu〉 by property of scalar product. The determinant of I has
another interpretation.

Theorem 3.2.2. Let x(u, v) be a regular parametrized surface and I be its
first fundamental form. Then

det(I) = ‖xu × xv‖2.

In particular, we have det(I) > 0 for any u, v.

Proof. The first statement follows by Proposition 1.3.17. Since x(u, v) is
regular, we have xu × xv 6= 0 which implies det(I) = ‖xu × xv‖2 > 0 for any
u, v.

Now we give the definition of surface area of regular surface.

Definition 3.2.3 (Surface area). Let S be a regular surface with parametriza-
tion x(u, v), (u, v) ∈ D. The surface area of S is defined by

A =

∫∫
D

√
det(I) dudv.
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Figure 12: Torus

Note that by Theorem 3.2.2, the surface surface can also be expressed as

A =

∫∫
D

‖xu × xv‖dudv.

To see that this gives the surface area of the surface, one may cut the surface
into small pieces which can be approximated by small parallelograms spanned
by x(u+ ∆u, v)− x(u, v) ≈ ∆uxu(u, v) and x(u, v + ∆v)− x(u, v) ≈ ∆vxv.
Then the area ∆A of each small piece can be approximated by the parallel-
ogram and we have

∆A ≈ ‖∆uxu ×∆vxv‖ = ‖xu × xv‖∆u∆v.

Therefore the surface area of the surface is

A = lim
∑
‖xu × xv‖∆u∆v =

∫∫
D

‖xu × xv‖dudv.

Someone may ask why we write
√

det(I) instead of ‖xu×xv‖ in the definition
of surface area. One reason is that cross product is defined only on R3 but
scalar product can be calculated in any dimension which allows us to use
Definition 3.2.3 to define surface area of regular surface in Rn for any n ≥ 3.
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Figure 13: Helicoid

Example 3.2.4.

1. Sphere: The function

x(φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ), 0 < φ < π, 0 < θ < 2π

parametrizes the sphere of radius r centered at the origin. We have{
xφ = (r cosφ cos θ, r cosφ sin θ,−r sinφ)

xθ = (−r sinφ sin θ, r sinφ cos θ, 0).
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The first fundamental form is

I =

(
〈xφ,xφ〉 〈xφ,xθ〉
〈xθ,xφ〉 〈xθ,xθ〉

)
=

(
r2 0
0 r2 sin2 φ

)
.

Therefore the surface area of the sphere is∫ 2π

0

∫ π

0

√
r2(r2 sin2 φ)dφdθ =

∫ 2π

0

∫ π

0

r2 sinφdφdθ

=

∫ 2π

0

[−r2 cosφ]π0dθ

=

∫ 2π

0

2r2dθ

= 4πr2.

2. Torus: The function

x(φ, θ) = ((R + r sinφ) cos θ, (R + r sinφ) sin θ, r cosφ), 0 < φ, θ < 2π

parametrizes a torus. We have{
xφ = (r cosφ cos θ, r cosφ sin θ,−r sinφ)

xθ = (−(R + r sinφ) sin θ, (R + r sinφ) cos θ, 0).

The first fundamental form is

I =

(
r2 0
0 (R + r sinφ)2

)
.

Therefore the surface area of the torus is∫ 2π

0

∫ 2π

0

√
r2(R + r sinφ)2dφdθ =

∫ 2π

0

∫ 2π

0

r(R + r sinφ)dφdθ

=

∫ 2π

0

[r(Rφ− r cosφ)]2π0 dθ

=

∫ 2π

0

2πrRdθ

= 4π2rR.
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Note that the surface area of the torus is the product of the circumfer-
ences of two circles of radius r and R.

Let’s calculate the surface area of surfaces given by graphs of functions.

Theorem 3.2.5 (Surface area of graphs of functions).

1. Rectangular coordinates: Let z = f(x, y), (x, y) ∈ D ⊂ R2, be a
differentiable function. The surface area of the graph of z = f(x, y) in
rectangular coordinates is

A =

∫∫
D

√
1 + f 2

x + f 2
ydxdy.

2. Cylindrical coordinates: Let z = f(r, θ), (r, θ) ∈ D ⊂ R+ × (0, 2π),
be a differentiable function. The surface area of the graph of z = f(r, θ)
in cylindrical coordinates is

A =

∫∫
D

√
r2 + r2f 2

r + f 2
θ drdθ.

Proof. 1. The surface is parametrized by x(x, y) = (x, y, f(x, y)), (x, y) ∈
D. Then {

xx = (1, 0, fx)

xy = (0, 1, fy)

and the first fundamental form is

I =

(
〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

)
=

(
1 + f 2

x fxfy
fxfy 1 + f 2

y

)
.

Therefore the surface area is

A =

∫∫
D

√
det(I)dxdy

=

∫∫
D

√
(1 + f 2

x)(1 + f 2
y )− (fxfy)2dxdy

=

∫∫
D

√
1 + f 2

x + f 2
ydxdy
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2. Parametrize the graph of the function z = f(r, θ) in cylindrical coordi-
nates by

x(r, θ) = (r cos θ, r sin θ, f(r, θ)), (r, θ) ∈ D.
The rest is left for the reader as exercise.

Theorem 3.2.6 (Surface area of surfaces of revolution). Let f(z) > 0, z ∈
(a, b) be a positive differentiable function. The surface area of the surface
obtained by rotating the graph of x = f(z) in the xz-plane about the z axis is

A = 2π

∫ b

a

f
√

1 + f ′2dz.

Proof. The surface is parametrized by x(θ, z) = (f(z) cos θ, f(z) sin θ, z),
(θ, z) ∈ (0, 2π)× (a, b). The rest is left as exercise for the reader.

3.3 Second fundamental form and Gaussian curvature

Recall that the vectors xu and xv are tangent to the parametrized surface
x(u, v) in R3. A normal vector to the surface is a vector orthogonal to both
xu and xv which can be obtained by taking the cross product of xu and xv.

Definition 3.3.1 (Unit normal vector). Let x(u, v) be a regular parametrized
surface. The unit normal vector to the surface is

n =
xu × xv
‖xu × xv‖

.

Note that there are two directions, namely n and −n, normal to a surface
in R3. Changing the order of parameters u, v would invert the direction of
the unit normal vector n. A vector is tangent to the surface if it is orthogonal
to n. This gives another description of tangent space to the surface.

Proposition 3.3.2. Let S be a regular surface with parametrization x(u, v).
Let TpS be the tangent space to the surface at a point p = x(u, v). Then

TpS = {v ∈ R3 : 〈v,n〉 = 0}.

Next we define the second fundamental form which is, similar to the first
fundamental form, a 2× 2 matrix valued function of u, v.
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Figure 14: Unit normal vector

Definition 3.3.3 (Second fundamental form). Let x(u, v) be a regular parametrized
surface which has continuous second derivatives. The second fundamental
form is the 2× 2 matrix valued function

II =

(
e f
f g

)
=

(
〈xuu,n〉 〈xuv,n〉
〈xvu,n〉 〈xvv,n〉

)
= −

(
〈xu,nu〉 〈xu,nv〉
〈xv,nu〉 〈xv,nv〉

)
.

Here we have given two equivalent formulas to calculate the second fun-
damental form. The two formulas give the same function for the following
reason. Observe that 〈xu,n〉 = 0 for any u, v. Differentiating the equality
with respect to v, we have

∂

∂v
〈xu,n〉 = 0

〈xuv,n〉+ 〈xu,nv〉 = 0

〈xuv,n〉 = −〈xu,nv〉

We may obtain, in a similar way, the equalities 〈xuu,n〉 = −〈xu,nu〉 and
〈xvv,n〉 = −〈xv,nv〉 and we see that the two formulas in Definition 3.3.3
give the same function. Here we have used an argument basically the same
as the proof of Lemma 1.3.35. Note that, similar to first fundamental form
I, the second fundamental form II is also a symmetric matrix. This follows
from the standard fact in multivariables calculus that when calculating the
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second order derivative of a function, the order of differentiation does not
matter if the function has continuous second derivatives. In particular, we
have xuv = xvu for any u, v and hence II is symmetric from the first formula
in Definition 3.3.3. Now we are ready to introduce the important notion of
Gaussian curvature in differential geometry.

Definition 3.3.4 (Gaussian curvature). Let x(u, v) be a regular parametrized
surface which has continuous second derivatives. The Gaussian curvature
of the surface is

K =
det(II)

det(I)
=

eg − f 2

EG− F 2

where I is the first fundamental form and II is the second fundamental form
of the surface.

Example 3.3.5.

1. Sphere: A sphere of radius r centered at the origin is parametrized by

x(φ, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ), 0 < φ < π, 0 < θ < 2π.

We have {
xφ = (r cosφ cos θ, r cosφ sin θ,−r sinφ)

xθ = (−r sinφ sin θ, r sinφ cos θ, 0)

and the first fundamental form is

I =

(
r2 0
0 r2 sin2 φ

)
.

Now

xφ × xθ = (r2 sin2 φ cos θ, r2 sin2 φ sin θ, r2 sinφ cosφ)

and the unit normal vector is

n =
xu × xv
‖xu × xv‖

= (sinφ cos θ, sinφ sin θ, cosφ).

Thus {
nφ = (cosφ cos θ, cosφ sin θ,− sinφ)

nθ = (− sinφ sin θ, sinφ cos θ, 0)
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and the second fundamental form is

II = −
(
〈xu,nu〉 〈xu,nv〉
〈xv,nu〉 〈xv,nv〉

)
=

(
−r 0
0 −r sin2 φ

)
.

Therefore the Gaussian curvature of the sphere is

K =
det(II)

det(I)
=
r2 sin2 φ

r4 sin2 φ
=

1

r2
.

2. Torus: Let R > r > 0 be constants. The function

x(φ, θ) = ((R + r sinφ) cos θ, (R + r sinφ) sin θ, r cosφ), 0 < φ, θ < 2π

parametrizes a torus. We have{
xφ = (r cosφ cos θ, r cosφ sin θ,−r sinφ)

xθ = (−(R + r sinφ) sin θ, (R + r sinφ) cos θ, 0)

and the first fundamental form is

I =

(
r2 0
0 (R + r sinφ)2

)
.

Now the unit normal vector is

n =
xu × xv
‖xu × xv‖

= (sinφ cos θ, sinφ sin θ, cosφ).

and the second derivatives of x are
xφφ = (−r sinφ cos θ,−r sinφ sin θ,−r cosφ)

xφθ = (−r cosφ sin θ, r cosφ cos θ, 0)

xθθ = (−(R + r sinφ) cos θ,−(R + r sinφ) sin θ, 0)

Thus the second fundamental form is

II =

(
〈xφφ,n〉 〈xφθ,n〉
〈xθφ,n〉 〈xθθ,n〉

)
=

(
−r 0
0 −(R + r sinφ) sinφ

)
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Therefore the Gaussian curvature of the torus is

K =
det(II)

det(I)
=
r(R + r sinφ) sinφ

r2(R + r sinφ)2
=

sinφ

r(R + r sinφ)
.

Note that for torus, we have K > 0 when 0 < φ < π, K = 0 when
φ = 0, π and K < 0 when π < φ < 2π.

Proposition 3.3.6 (Curvature of graphs of functions).

1. Let f(x, y), (x, y) ∈ D ⊂ R2, be a function with continuous second
derivatives. The Gaussian curvature of the graph of z = f(x, y) in
rectangular coordinates is

K(x, y) =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2
.

2. Let f(r, θ), (r, θ) ∈ D ⊂ R+ × (0, 2π), be a function with continuous
second derivatives. The Gaussian curvature of the graph of z = f(r, θ)
in cylindrical coordinates is

K(r, θ) =
r2frr(rfr + fθθ)− (rfrθ − fθ)2

(r2 + r2f 2
r + f 2

θ )2
.

Proof. 1. Parametrize the graph of the function z = f(x, y) in rectangular
coordinates by

x(u, v) = (u, v, f(u, v).

We have {
xu = (1, 0, fx)

xv = (0, 1, fy)

and the first fundamental form is

I =

(
1 + f 2

x fxfy
fxfy 1 + f 2

y

)
.

Now the unit normal vector is

n =
xu × xv
‖xu × xv‖

= (− fx√
1 + f 2

x + f 2
y

,− fy√
1 + f 2

x + f 2
y

,
1√

1 + f 2
x + f 2

y

).



Towards Differential Geometry 107

and the second derivatives of x are
xuu = (0, 0, fxx)

xuv = (0, 0, fxy)

xvv = (0, 0, fyy)

Thus the second fundamental form is

II =


fxx√

1 + f 2
x + f 2

y

fxy√
1 + f 2

x + f 2
y

fxy√
1 + f 2

x + f 2
y

fyy√
1 + f 2

x + f 2
y


Therefore the Gaussian curvature of the surface is

K =
det(II)

det(I)
=

fxxfyy − f 2
xy

(1 + f 2
x + f 2

y )2
.

2. Parametrize the graph of the function z = f(r, θ) in cylindrical coordi-
nates by

x(r, θ) = (r cos θ, r sin θ, f(r, θ)).

The rest is left for the reader as exercise.

Proposition 3.3.7 (Gaussian curvature of surfaces of revolution).

1. By graph of function: Let f(z), z ∈ (a, b), be a function with contin-
uous second derivative. The Gaussian curvature of the surface obtained
by rotating the graph of x = f(z) on the xz-plane about the z axis is

K(z) = − f ′′

f(1 + f ′2)2
.

2. By parametrized curve: Let (ϕ(u), ψ(u)), u ∈ (a, b), be a regular
parametrized curve. The Gaussian curvature of the surface obtained
by rotating the curve (x, z) = (ϕ(u), ψ(u)) on the xz-plane about the z
axis is

K(u) =
ψ′(ϕ′ψ′′ − ϕ′′ψ′)
ϕ(ϕ′2 + ψ′2)2

.
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3. By arc length parametrized curve: Let (ϕ(s), ψ(s)), s ∈ (a, b),
be an arc length parametrized curve. The Gaussian curvature of the
surface obtained by rotating the curve (x, z) = (ϕ(s), ψ(s)) on the xz-
plane about the z axis is

K(s) = −ϕ
′′

ϕ
.

Proof. 1. Parametrize the surface of revolution by graph of function x =
f(z) by

x(u, θ) = (f(u) cos θ, f(u) sin θ, u).

The derivatives of x are

xu = (f ′ cos θ, f ′ sin θ, 1)

xθ = (−f sin θ, f cos θ, 0)

xuu = (f ′′ cos θ, f ′′ sin θ, 0)

xuθ = (−f ′ sin θ, f ′ cos θ, 0)

xθθ = (−f cos θ,−f sin θ, 0)

The first fundamental form is

I =

(
1 + f ′2 0

0 f 2

)
.

The unit normal vector is

n = (− cos θ√
1 + f ′2

,− sin θ√
1 + f ′2

,
f ′√

1 + f ′2
)

and the second fundamental form is

II =

 −
f ′′√

1 + f ′2
0

0
f√

1 + f ′2

 .

Therefore the Gaussian curvature is

K =
det(II)

det(I)
= − f ′′

f(1 + f ′2)2
.
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2. Parametrize the surface of revolution by parametrized curve (x, z) =
(ϕ(u), ψ(u)) by

x(u, θ) = (ϕ(u) cos θ, ϕ(u) sin θ, ψ(u)).

The rest are left for the reader as exercise.

3. Exercise.

Example 3.3.8 (Catenoid). Consider the surface obtained by rotating the
catenary x = f(z) = cosh z in the xz-plane about the z axis which is called
catenoid. The Gaussian curvature of catenoid is

K(z) = − f ′′

f(1 + f ′2)2

= − cosh z

cosh z(1 + sinh z2)2

= − 1

cosh4 z

Example 3.3.9 (Torus). Show that the Gaussian curvature of the torus
obtained by rotating the arc length parametrized curve

(x, z) = (ϕ(s), ψ(s)) =
(
R + r sin

s

r
, r cos

s

r

)
, s ∈ (0, 2π)

about the z-axis is

K =
sin

s

r
r(R + r sin s

r
)
.

Proof. Observe that ϕ
′ = cos

s

r
,

ϕ′′ = −1

r
sin

s

r
By Proposition 3.3.7, we have

K = −ϕ
′′

ϕ

=
sin

s

r
r(R + r sin s

r
)
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Figure 15: Catenoid

Example 3.3.10 (Pseudosphere). Consider the surface obtained by rotating
the tractrix (Example 2.2.10)

(x, z) = (ϕ(t), ψ(t)) = (secht, t− tanh t) , t > 0

about the z-axis. This surface is called the pseudosphere. Show that the
pseudosphere has constant Gaussian curvature equal to −1.
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Figure 16: Pseudosphere

Proof. Observe that

ϕ′ = −secht tanh t

ϕ′′ = secht tanh2 t− sech3t

= secht(tanh2 t− sech2t)

= secht(1− 2sech2t)

ψ′ = 1− sech2t

= tanh2 t

ψ′′ = 2 tanh tsech2t
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Note that

ϕ′2 + ψ′2 = sech2t tanh2 t+ tanh4 t = tanh2 t(sech2t+ tanh2 t) = tanh2 t.

By Proposition 3.3.7, we have

K =
ψ′(ϕ′ψ′′ − ϕ′′ψ′)
ϕ(ϕ′2 + ψ′2)2

=
tanh2 t(−secht tanh t(2 tanh tsech2t)− secht(1− 2sech2t) tanh2 t)

secht tanh4 t

=
− tanh2 t(secht tanh2 t)

secht tanh4 t
= −1.

Alternative, we may use the arc length parametrization of the tractrix given
by (Proposition 2.2.10)

(ϕ(s), ψ(s)) = (e−s, ln(es +
√
e2s − 1)−

√
1− e−2s), s > 0.

Then the Gaussian curvature of the pseudosphere is

K = −ϕ
′′(s)

ϕ(s)
= −e

−s

e−s
= −1.

We conclude this section by stating a formula for Gaussian curvature
which involves only the first fundamental form and its derivatives but the
the second fundamental form.

Theorem 3.3.11. Let x(u, v) be a regular parametrized surface. Suppose
F = 0, i.e., the first fundamental form of x(u, v) is

I =

(
E 0
0 G

)
.

Then the Gaussian curvature of x(u, v) is

K = − 1

2
√
EG

[(
Ev√
EG

)
v

+

(
Gu√
EG

)
u

]
.
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Example 3.3.12 (Helicoid). Show that the Gaussian curvature of the heli-
coid parametrized by

x(u, θ) = (u cos θ, u sin θ, θ), u, θ ∈ R,

is

K = − 1

(1 + u2)2
.

Proof. The first derivatives of x are{
xu = (cos θ, sin θ, 0),

xθ = (−u sin θ, u cos θ, 1).

Thus the first fundamental form is

I =

(
1 0
0 1 + u2

)
Now Eθ = 0

Gu =
∂

∂u
(1 + u2) = 2u,

Therefore by Theorem 3.3.11, the Gaussian curvature is

K = − 1

2
√
EG

[(
Eθ√
EG

)
θ

+

(
Gu√
EG

)
u

]
= − 1

2
√

1 + u2

(
2u√

1 + u2

)
u

= − 1√
1 + u2

(√
1 + u2 − u( u√

1+u2
)

1 + u2

)
= − 1

(1 + u2)2

We summarize the formulas for Gaussian curvature in the following propo-
sition.

Proposition 3.3.13 (Formulas for Gaussian curvature). Let S be a regular
surface and K be its Gaussian curvature.
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1. Definition:

K =
det(II)

det(I)
=

eg − f 2

EG− F 2

2. Graph of functions:

(a) Rectangular coordinates: For z = f(x, y),

K =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2
.

(b) Cylindrical coordinates: For z = f(r, θ),

K =
r2frr(rfr + fθθ)− (rfrθ − fθ)2

(r2 + r2f 2
r + f 2

θ )2
.

3. Surface of revolution:

(a) By graph of function: For x(u, θ) = (f(u) cos θ, f(u) sin θ, u),

K(u, θ) = K(u) = − f ′′

f(1 + f ′2)2
.

(b) By parametrized curve: For x(u, θ) = (ϕ(u) cos θ, ϕ(u) sin θ, ψ(u)),

K(u, θ) = K(u) =
ψ′(ϕ′ψ′′ − ϕ′′ψ′)
ϕ(ϕ′2 + ψ′2)2

.

(iii) By arc length parametrized curve: For x(u, θ) = (ϕ(u) cos θ, ϕ(u) sin θ, ψ(u)),
with ϕ′2 + ψ′2 = 1,

K(u, θ) = K(u) = −ϕ
′′

ϕ

4. Parametrized surface with F = 0:

K(u, v) = − 1

2
√
EG

[(
Ev√
EG

)
v

+

(
Gu√
EG

)
u

]
.
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3.4 Gauss map and its differential

To understand the geometric meaning of the Gaussian curvature, we intro-
duce the Gauss map which is defined simply by the unit normal vector.

Definition 3.4.1 (Gauss map). Let S be a regular surface in R3 with regular
parametrization x(u, v). For each p = x(u, v), we associate the unit normal
vector n(p) to p. This defines a map n : S → S2 from the surface S to the
unit sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1} and is called the Gauss map
of S.

The Gauss map has the following distinguish properties.

Proposition 3.4.2. Let S be a regular surface with regular parametrization
x(u, v) and n : S → S2 be the Gauss map which sends a point p ∈ S to the
unit normal vector n = n(p) which is a point on the unit sphere S2. Let
p ∈ S be any point on the surface S. Then the following statements hold.

1. The unit normal vector n = n(p) to the surface S is a unit normal
vector to the unit sphere S2 at n.

2. The tangent space to the unit sphere S2 at n = n(p) is equal to the
tangent space to the surface S at p. In other words,

TnS
2 = TpS.

3. The vectors nu(p) and nv(p) are tangent to S at p. In other words,

nu,nv ∈ TpS

which means both nu, nv can be written as linear combinations of xu
and xv.

Proof. 1. By writing down a regular parametrization of S2, one can prove
easily that the unit normal vector to S2 at any point v ∈ S2 is v itself.

2. Observe that
TpS = {v ∈ R3 : 〈v,n〉},

it suffice to show that for any n ∈ S2, we have

TnS
2 = {v ∈ R3 : 〈v,n〉}.
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Let n(θ, φ) be a parametrization of S2 which is regular at n. By taking
derivatives of the constant function ‖n(θ, φ)‖2 = 1, we have

〈nθ,n〉 = 〈nφ,n〉 = 0.

It follows that n is normal to S2 at n and therefore

TnS
2 = {v ∈ R3 : 〈v,n〉} = TpS.

3. Using an argument (see Lemma 1.3.35, proof of Theorem 2.4.4 and the
exposition after Definition 3.3.3) which has been used for many times,
we see that

〈nu,n〉 = 〈nv,n〉 = 0

are constantly equal to zero. Therefore we have nu,nv ∈ TpS.

A consequence of the above proposition is that since both nu and nv are
orthogonal to n, their cross product nu × nv is normal to the surface S and
thus is a scalar multiple of xu × xv. This multiple is exactly the Gaussian
curvature.

Theorem 3.4.3. Let x(u, v) be a regular parametrized surface and n(u, v)
be the unit normal vector at x(u, v). Then

nu × nv = Kxu × xv

where K is the Gaussian curvature of the surface.

Proof. Since nu,nv ∈ TpS, we have nu × nv is normal to the surface S and
thus

nu × nv = cxu × xv

for some real number c which is a function on S. By Proposition 1.3.17, we
have

det(I) = 〈xu × xv,xu × xv〉
and

det(II) = 〈xu × xv,nu × nv〉
= 〈xu × xv, cxu × xv〉
= c〈xu × xv,xu × xv〉
= c det(I)
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Note that det(I) > 0 and we obtain

c =
det(II)

det(I)
= K

where K is the Gaussian curvature of the surface.

The Gaussian curvature has a geometric interpretation as follows. Let S
be a regular surface parametrized by x(u, v), (u, v) ∈ D. Suppose Ω ⊂ S is a
region on S which is an open connected subset of S. We define A(Ω) as the
surface area of Ω ⊂ S and σ(Ω) as the surface area of the image n(Ω) ⊂ S2

of Ω under the Gauss map. Now consider the small region

Ω = {x(s, t) : u < s < u+ ∆u, v < t < ∆v} ⊂ S

on S which is the image of a small rectangle (u, u + ∆u) × (v + ∆v) ⊂ D.
We would like to compare the area of this small region Ω ⊂ S and the signed
area10 of its image n(Ω) ⊂ S2 under the Gauss map. The area of Ω can be
approximated by the parallelogram spanned by ∆uxu and ∆vxv which has
area

∆A ≈ ‖xu × xv‖∆u∆v.

On the other hand, since nu,nv are tangent to S, we have

nu × nv = 〈nu × nv,n〉n = ±‖nu × nv‖n.

Here the sign is positive if n preserves the orientation at p = x(u, v) or
equivalently the Gaussian curvature is positive at p and the sign is negative
if n reserves the orientation at p or equivalently the Gaussian curvature is
negative at p. Thus the signed area of n(Ω) can be approximated by

∆σ ≈ 〈∆unu ×∆vnv,n〉 = 〈nu × nv,n〉∆u∆v.

10The signed area of n(Ω) is positive if n preserves orientation and is negative if n
reverses orientation.
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Now if we let ∆u,∆v go to zero, the ratio of these two areas would be

dσ

dA
= lim

∆u,∆v→0

∆σ

∆A

= lim
∆u,∆v→0

〈nu × nv,n〉∆u∆v

‖xu × xv‖∆u∆v

=
〈nu × nv, ‖xu × xv‖n〉

‖xu × xv‖2

=
〈nu × nv,xu × xv〉
‖xu × xv‖2

=
det(II)

det(I)
(Proposition 1.3.17)

= K.

So we have the following geometric interpretation of Gaussian curvature
which can be thought of as an analogue of Proposition 2.3.12 for surface.

Proposition 3.4.4. Let S be a regular surface with parametrization x(u, v),
(u, v) ∈ D. Let A and σ be the signed surface area function on S and S2

respectively. Then we have
dσ

dA
= K

where K is the Gaussian curvature.

We may also understand the Gaussian curvature through the differential
of Gauss map, which is a linear operator on the tangent space TpS induced
naturally by the Gauss map. Let f : S1 → S2 be a differentiable map from
regular surface S1 to regular surface S2. Let x1(u, v) be a regular parametriza-
tion of S1. Then x2(u, v) = f(x1(u, v) gives a regular parametrization of S2.
For each p ∈ S1, we define a function dfp : TpS1 → Tf(p)S2 by

dfp

(
α
∂x1

∂u
+ β

∂x1

∂v

)
= α

∂x2

∂u
+ β

∂x2

∂v

which is a linear transformation from TpS1 to Tf(p)S2 and is called the differ-
ential of f at p. One can show that dpf does not depends on the parametriza-
tion x1(u, v) of S1. For if x1(s, t) is another regular parametrization of S1,
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by chain rule in multivariable calculus, we have
∂x1

∂s
=
∂u

∂s

∂x1

∂u
+
∂v

∂s

∂x1

∂v
∂x1

∂t
=
∂u

∂t

∂x1

∂u
+
∂v

∂t

∂x1

∂v

which implies

dfp

(
∂x1

∂s

)
= dfp

(
∂u

∂s

∂x1

∂u
+
∂v

∂s

∂x1

∂v

)
=

∂u

∂s

∂x2

∂u
+
∂v

∂s

∂x2

∂v

=
∂x2

∂s

and similarly dfp
(
∂x1

∂t

)
= ∂x2

∂t
.

Now for the case of Gauss map n : S → S2, we have Tn(p)S
2 = TpS for

any p ∈ S (Proposition 3.4.2). Therefore the differential dnp : TpS → TpS of
Gauss map at p is a linear transformation from TpS to itself, in other words,
a linear operator on TpS.

Definition 3.4.5 (Differential of Gauss map). Let S be a regular surface in
R3 with regular parametrization x(u, v). For each p ∈ S, define dnp : TpS →
TpS called the differential of Gauss map by

dnp(αxu + βxv) = αnu + βnv

for any real numbers α, β ∈ R.

The differential of Gauss map measures how rigorously the Gauss map,
that is the unit normal vector, bends near p along different directions. There
are two special directions which somehow determine the local geometry of
the surface.

Definition 3.4.6 (Principal curvatures and principal directions). Let S be
a regular surface and p ∈ S. Let ξ1, ξ2 ∈ TpS be two linearly independent
eigenvectors of the differential dnp : TpS → TpS of Gauss map at p and κ1, κ2

be negative of the associated eigenvalues respectively. In other words,{
dnp(ξ1) = −κ1ξ1

dnp(ξ2) = −κ2ξ2

.
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Then we say that κ1, κ2 are the principal curvatures of S at p, and ξ1, ξ2

are the corresponding principal directions.

One may wonder whether we can always find two distinct principal direc-
tions, in other words, two linearly independent eigenvectors for dnp at any
p ∈ S. In fact, once we prove that dnp is self-adjoint, it will follow that there
exists two orthogonal principal directions.

Theorem 3.4.7 (Self-adjointness of differential of Gauss map). The differ-
ential of Gauss map dnp : TpS → TpS is self-adjoint. In other words, for any
u,v ∈ TpS, we have

〈dnp(u),v〉 = 〈u, dnp(v)〉.

Proof. It suffices to check that

〈dnp(xu),xv〉 = 〈nu,xv〉
= −〈n,xvu〉 (Lemma 1.3.35)

= −〈n,xuv〉
= 〈nv,xu〉 (Lemma 1.3.35)

= 〈dnp(xv),xu〉
= 〈xu, dnp(xv)〉

Now applying the spectral theorem for self-adjoint operator (Theorem
1.6.15) to dnp, we obtain the following theorem.

Theorem 3.4.8. Let S be a regular surface in R3 and p ∈ S. Then there
exists principal directions ξ1, ξ2 ∈ TpS which constitute an orthonormal basis
for TpS.

Next we find a matrix representation (Definition 1.6.3) of the linear oper-
ator dnp which can be expressed in terms of the first and second fundamental
forms.

Proposition 3.4.9. The matrix representation of dnp with respect to basis
xu,xv is

−(II)(I−1) = − 1

EG− F 2

(
eG− fF fE − eF
fG− gF gE − fF

)
.
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In other words, we have {
dnp(xu) = axu + bxv

dnp(xv) = cxu + dxv

where (
a b
c d

)
= − 1

EG− F 2

(
eG− fF fE − eF
fG− gF gE − fF

)
.

Proof. Let a, b, c, d be real numbers such that{
dnp(xu) = nu = axu + bxv

dnp(xv) = nv = cxu + dxv
.

It follows that (
a b
c d

)(
xu
xv

)
=

(
nu
nv

)
(
a b
c d

)
〈
(

xu
xv

)
,
(

xu xv
)
〉 = 〈

(
nu
nv

)
,
(

xu xv
)
〉(

a b
c d

)(
〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

)
=

(
〈nu,xu〉 〈nu,xv〉
〈nv,xu〉 〈nv,xv〉

)
(
a b
c d

)(
E F
F G

)
= −

(
e f
f g

)
Therefore (

a b
c d

)
= −

(
e f
f g

)(
E F
F G

)−1

= −
(
e f
f g

)
1

EG− F 2

(
G −F
−F E

)
= − 1

EG− F 2

(
eG− fF fE − eF
fG− gF gE − fF

)

Now we can express Gaussian curvature in terms of principal curvatures.
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Theorem 3.4.10. Let S be a regular surface and K be the Gaussian curva-
ture of S. Then for any p ∈ S,

K(p) = det(dnp) = κ1κ2

where det(dnp) is the determinant (Definition 1.6.6) of dnp and κ1, κ2 are
the principal curvatures of S at p.

Proof. Since dnp is represented by the matrix −(II)(I−1), we have

det(dnp) = det(−(II)(I−1)) =
det(II)

det(I)
= K.

Since κ1, κ2 are the eigenvalues of dnp, we have K = det(dnp) = κ1κ2.

Since the Gauss map n does not depend on the parametrization x(u, v)
of the surface, we see that the Gaussian curvature also does not depend on
parametrization.

Another geometric quantity that comes out naturally from dnp is the
mean curvature.

Definition 3.4.11 (Mean curvature). Let S be a regular surface and dnp be
the differential of Gauss map at p ∈ S. The mean curvature of S at p is

H = −1

2
tr(dnp) =

1

2
(κ1 + κ2) =

1

2
tr((II)(I−1)) =

1

2

(
gE − 2fF + eG

EG− F 2

)
.

where tr(dnp) is the trace (Definition 1.6.6) of dnp and κ1, κ2 are the principal
curvatures of S at p.

Note that if we reverse the direction of the unit vector n, that is, reserving
the order of the parameters u, v, there will be a change of sign of the mean
curvature but the Gaussian curvature would remain unchanged. So the sign
of mean curvature does not matter. A surface with mean curvature zero is
called a minimal surface.

Definition 3.4.12 (Minimal surface). Let S be a regular surface in R3 and
H be the mean curvature of S. We say that S is a minimal surface if
H = 0 at every point of S.
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Minimal surfaces have a distinguish property which can be considered as
a two dimensional analogue of the arc length minimizing property (Theorem
2.2.11) of straight lines. A straight line segment is a curve of minimum arc
length among all curves with fixed end points. Similarly a minimal surface
is a surface of minimal surface area among all surfaces with fixed boundary
and hence its name.

Theorem 3.4.13. Let S be a minimal surface with parametrization x : D →
R3 such that x can be extended continuously to the boundary. Then S has
the minimum surface area among all surfaces with the same boundary of S.

Example 3.4.14. Show that the catenoid parametrized by

x(θ, v) = (cosh v cos θ, cosh v sin θ, v), 1 < θ < 2π, v ∈ R,

is a minimal surface.

Proof. We have

xθ = (− cosh v sin θ, cosh v cos θ, 0)

xv = (sinh v cos θ, sinh v sin θ, 1)

xθ × xv = (cosh v cos θ, cosh v sin θ,− cosh v sinh v)

‖xθ × xv‖2 = cosh2 v + cosh2 v sinh2 v = cosh2 v(1 + sinh2 v) = cosh4 v

n = (sechv cos θ, sechv sin θ, tanh v)

xθθ = (− cosh v cos θ,− cosh v sin θ, 0)

xθv = (− sinh v sin θ, sinh v cos θ, 0)

xvv = (cosh v cos θ, cosh v sin θ, 0).

Then the first and second fundamental forms are

I =

(
E F
F G

)
=

(
cosh2 v 0

0 cosh2 v

)
II =

(
e f
f g

)
=

(
−1 0
0 1

)
Thus the mean curvature is

H =
1

2

(
gE − 2fF + eG

EG− F 2

)
=

1

2

(
cosh2 v − cosh2 v

cosh4 v

)
= 0.

Therefore the catenoid is a minimal surface.
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To understand the geometric meaning of Gaussian curvature and mean
curvature, let’s take a closer look at the principal curvatures. A natural way
of studying the curvature of a surface is to examine the curvature of curves
on the surface. Let S be a regular surface and v ∈ TpS be a unit vector
tangent to S at p. Suppose C is a curve lying on S passing through p and
is tangent to v at p. In other words, the unit tangent vector T of C at p
satisfies T = v. We would like to understand the curvature of S from the
curvature of the curve C. It turns out that the curvature of C at p depends
only on the unit tangent T ∈ TpS and the angle between the unit normal N
of C and the unit normal vector of n at p.

Theorem 3.4.15. Let S be a regular surface and p ∈ S be a point on S. Let
C be a regular parametrized curve passing through p. Then we have

κ cosφ = −〈T, dnp(T)〉

where T, κ are the unit tangent vector, signed curvature of C at p respectively,
dnp is the differential of Gauss map of S at p and φ is the angle between
the unit normal vector N of C and the unit normal vector n of S at p.
Furthermore if T = αxu + βxv ∈ TpS, then we have

κ cosφ = (α β) II

(
α
β

)
where II is the second fundamental form.

Proof. Let x(u, v) be a regular parametrization of S. Since C lies on S, C
has an arc length parametrization r(s) such that r(s) = x(u(s), v(s)) for
some functions u(s), v(s) with r(0) = p and r′(0) = T. By chain rule in
multivariable calculus, we have

r′(s) =
d

ds
x(u(s), v(s))

= u′(s)xu + v′(s)xv

and similarly

n′(s) =
d

ds
n(s)

= u′(s)nu + v′(s)nv
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Observe that cosφ = 〈n,N〉 and we have

κ cosφ = κ〈n,N〉
= 〈κN,n〉
= 〈T′(0),n〉 (Theorem 2.3.6)

= −〈T(0),n′(0)〉 (Lemma 1.3.35)

= −〈T, u′(0)nu + v′(0)nv〉
= −〈T, u′(0)dnp(xu) + v′(0)dnp(xu)〉 (Definition 3.4.5)

= −〈T, dnp(u′(0)xu + v′(0)xu)〉
= −〈T, dnp(r′(0))〉
= −〈T, dnp(T)〉.

Furthermore if T = αxu + βxv ∈ TpS, then u′(0) = α, v′(0) = β since
T = r′(0) = u′(0)xu + v′(0)xv and we have

κ cosφ = −〈T, u′(0)nu + v′(0)nv〉
= −〈αxu + βxv, αnu + βnv〉

= − (α β)

(
〈xu,nu〉 〈xu,nv〉
〈xv,nu〉 〈xv,nv〉

)(
α
β

)
= (α β) II

(
α
β

)
where II is the second fundamental form.

In particular if φ = 0, then the curvature of C depends only on the
tangent direction T and is called the normal curvature of S along T.

Definition 3.4.16 (Normal curvature). Let S be a regular surface and p be
a point on S. Let v ∈ TpS be a unit vector tangent to the surface S at p.
The normal curvature of S at p along v is

κn(v) = κ cosφ = −〈v, dnp(v)〉

where κ is the curvature of a curve C which passes through p and has unit
tangent vector equals to v, and φ is the angle between the unit normal vectors
N and n of C and S at p respectively.



Towards Differential Geometry 126

To visualize the normal curvature of a surface S at p along unit vector
v ∈ TpS, one may cut the surface using a plane which passes through p and
tangent to v and the normal vector n of S. Then the cross section, that is
the intersection of the plane and the surface S, is a curve with normal vector
n or −n and has curvature equals ±κn(v), where κn is the normal curvature.

Note that if the choice of direction of n is reversed, the normal curvature
would have a change in sign. So the sign of normal curvature is not important.

Theorem 3.4.17. Let S be a regular surface and p ∈ S be a point on S. Let
ξ1, ξ2 be the principal directions which constitute an orthonormal basis for
TpS and κ1, κ2 be the associated principal curvatures at p respectively. Let
v ∈ TpS be a unit vector tangent to S at p with v = cos θξ1 + sin θξ2 where
θ is the angle between v and ξ1. Then the normal curvature of S at p along
v is

κn(v) = κ1 cos2 θ + κ2 sin2 θ.

Proof. By Theorem 3.4.15, the normal curvature along v is

κn(v) = −〈v, dnp(v)〉
= −〈cos θξ1 + sin θξ2, dnp(cos θξ1 + sin θξ2)〉
= −〈cos θξ1 + sin θξ2,−κ1 cos θξ1 − κ2 sin θξ2)〉
= κ1 cos2 θ + κ2 sin2 θ.

A direct consequence of the above theorem is that the normal curva-
ture attains its maximum and minimum along the two orthogonal principal
directions.

Theorem 3.4.18. Let S be a regular surface and p ∈ S. Let κ1 ≤ κ2 be the
principal curvatures of S at p which associate with two orthogonal principal
directions. Then for any unit vector v ∈ TpS tangent to S at p, the normal
curvature κn(v) along v satisfies

κ1 ≤ κn(v) ≤ κ2.

Let us summarize the properties of Gaussian curvature we have discussed
in the following theorem.

Theorem 3.4.19. Let S be a regular surface parametrized by x(u, v) and K
be the Gaussian curvature of S.
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1.

K =
det(II)

det(I)

where I and II are the first fundamental forms of S.

2.
nu × nv = Kxu × xv

where n is the unit normal vector of S.

3.

K =
dσ

dA

where A and σ are the signed area function on S and S2 respectively.

4.
K = κ1κ2

where κ1, κ2 are the principal curvatures associated with two orthogonal
principal directions.

3.5 Theorema egregium

One may find that the Gaussian curvature of a surface somehow describe the
change of normal vector along the surface. When Gauss introduced the no-
tion of Gaussian curvature, he noticed already that one does not need to use
normal vector to calculate the curvature. Say it in another way, the Gaussian
curvature depends only on the mensuration on the surface but not how the
surface is put into R3. This property of Gaussian curvature is so important
and elegant that Gauss named his result ‘Theorema Egregium’ which are
Latin meaning remarkable theorem. The theorem laid the foundation and
inspired the development of the theory of differential geometry. Before we
state the theorem, we introduce the notion of isometry.

Let S1 be a regular surface and f : S1 → S2 be a differentiable bijective
map from S1 to another regular surface S2. Then any regular parametrization
x1(u, v) of S1 induces a parametrization of S2 by x2(u, v) = f ◦ x1(u, v) =
f(x1(u, v)). Furthermore the first fundamental forms I1(u, v) and I2(u, v) on
S1 and S2 with respect to x1(u, v) and x2(u, v) can both be considered as
matrix valued functions of u, v. We say that f : S1 → S2 is an isometry if
I1(u, v) = I2(u, v) for any u, v.
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Definition 3.5.1 (Isometry). Let S1 and S2 be regular surfaces. Let f :
S1 → S2 be a differentiable bijective map from S1 to S2. We say that a map
f : S1 → S2 is an isometry if I1(u, v) = I2(u, v) for any u, v, where I1(u, v)
is the first fundamental form of S1 and I2(u, v) is the first fundamental form
of S2 induced by I1. We say that S1 and S2 are isometric if there exists an
isometry between S1 and S2.

Roughly speaking, two regular surfaces S1 and S2 are isometric if they
have the same first fundamental form. Intuitively, it means that one may get
S2 from S1 by bending S1 without stretching it. In this case, the mensuration
on S1 and S2 would be the same. A curve on S1 would have the same arc
length as its image in S2. A region on S1 would have the same surface area
as its image in S2 and two curves on S1 would intersect at the same angle as
their image in S2. Gauss’ groundbreaking result asserts that two isometric
surfaces must have identical Gaussian curvature.

Theorem 3.5.2 (Theorema egregium). Let S1 and S2 be two regular sur-
faces. Suppose S1 and S2 are isometric, that is, there exists isometry f :
S1 → S2 between S1 and S2. Then for any p ∈ S1, the Gaussian curvature
of S1 at p is equal to the Gaussian curvature of S2 at f(p). In other words,

K(f(p)) = K(p)

for any p ∈ S1.

Proof. The proof of the theorem is complete if one can find a formula for
Gaussian curvature which involves only first fundamental form but not second
fundamental form. We will provide such a formula (Theorem 3.5.4) and give
a proof of it at the end of this section.

For example, one can get a cylindrical or conical surface by rolling up
a plane which has Gaussian curvature zero everywhere. The theorem then
implies that the Gaussian curvature of a cylindrical or conical surface must
also be identically zero because the Gaussian curvature of a plane is zero.
Another consequence of the theorem is that one cannot bend a plane into
a spherical surface without stretching the plane because a spherical surface
has nonzero Gaussian curvature. Thus it is impossible to draw a map for the
earth surface with uniform scale. The following example is less obvious.
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Example 3.5.3 (Isometry between catenoid and helicoid). Let S1 be the
catenoid which is parametrized by

x1(θ, v) = (cosh v cos θ, cosh v sin θ, v), (θ, v) ∈ (0, 2π)× R

and S2 be the helicoid which is parametrized by

x2(θ, v) = (sinh v cos θ, sinh v sin θ, θ), (θ, v) ∈ (0, 2π)× R.

The first fundamental forms of them are the same and is equal to

I1(θ, v) = I2(θ, v) =

(
cosh2 v 0

0 cosh2 v

)

Figure 17: Isometry between catenoid and helicoid

By theorema egregium (Theorem 3.5.2), the two surfaces have the identical
Gaussian curvature (See Example 3.3.8 and Example 3.3.12) which is equal
to

K = − 1

cosh4 v
.
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Catenoid and Helicoid are both minimal surface and thus have mean
curvature identically zero. However, the mean curvature of two isometric
surfaces may not be identical. For example, a cylindrical surface and a plane
are isometric but a cylindrical surface has nonzero mean curvature while that
of a plane is zero.

We conclude this section by providing a formula for Gaussian curvature
which involve only first fundamental form but not second fundamental form
as promised.

Theorem 3.5.4. Let x(u, v) be a regular parametrized surface. Then

K =
1

4(EG− F 2)2

∣∣∣∣∣∣
−Evv + 2Fuv −Guu Eu 2Fu − Ev

2Fv −Gu E F
Gv F G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 Ev Gu

Ev E F
Gu F G

∣∣∣∣∣∣
 .

In particular, if F = 0 is identically zero, then

K = − 1

2
√
EG

[(
Ev√
EG

)
v

+

(
Gu√
EG

)
u

]
.

Proof. Since det(I) = EG− F 2 = ‖xu × xv‖2 and ‖xu × xv‖n = xu × xv,

K(EG− F 2)2

= det(I) det(II)

= ‖xu × xv‖2

∣∣∣∣ 〈xuu,n〉 〈xuv,n〉〈xvu,n〉 〈xvv,n〉

∣∣∣∣
=

∣∣∣∣ 〈xuu, ‖xu × xv‖n〉 〈xuv, ‖xu × xv‖n〉
〈xvu, ‖xu × xv‖n〉 〈xvv, ‖xu × xv‖n〉

∣∣∣∣
=

∣∣∣∣ 〈xuu,xu × xv〉 〈xuv,xu × xv〉
〈xvu,xu × xv〉 〈xvv,xu × xv〉

∣∣∣∣
=

∣∣∣∣∣∣
〈xuu,xvv〉 − 〈xuv,xuv〉 〈xuu,xu〉 〈xuu,xv〉

〈xvv,xu〉 〈xu,xu〉 〈xu,xv〉
〈xvv,xv〉 〈xv,xu〉 〈xv,xv〉

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 〈xuv,xu〉 〈xuv,xv〉

〈xvu,xu〉 〈xu,xu〉 〈xu,xv〉
〈xvu,xv〉 〈xv,xu〉 〈xv,xv〉

∣∣∣∣∣∣ . (Proposition 1.3.17)
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Observe that by product rule (Proposition 1.3.34),(
Eu Fu
Fu Gu

)
=

∂

∂u

(
E F
F G

)
=

∂

∂u

(
〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

)
=

(
〈xuu,xu〉 〈xuu,xv〉
〈xvu,xu〉 〈xvu,xv〉

)
+

(
〈xu,xuu〉 〈xu,xvu〉
〈xv,xuu〉 〈xv,xvu〉

)
=

(
2〈xuu,xu〉 〈xuu,xv〉+ 〈xuv,xu〉

〈xuu,xv〉+ 〈xuv,xu〉 2〈xvu,xv〉

)
.

Similarly(
Ev Fv
Fv Gv

)
=

(
2〈xuv,xu〉 〈xvv,xu〉+ 〈xuv,xv〉

〈xvv,xu〉+ 〈xuv,xv〉 2〈xvv,xv〉

)
.

Combining the above two equalities, we obtain

〈xuu,xu〉 =
Eu
2
,

〈xuv,xu〉 =
Ev
2
,

〈xuv,xv〉 =
Gu

2
,

〈xvv,xv〉 =
Gv

2
,

〈xuu,xv〉 = Fu − 〈xuv,xu〉 = Fu −
Ev
2
,

〈xvv,xu〉 = Fv − 〈xuv,xv〉 = Fv −
Gu

2
.

Moreover by considering the second derivative of F = 〈xu,xv〉 with respect
to u, v, we have

〈xuu,xvv〉 =
∂

∂u
〈xvv,xu〉 − 〈xvvu,xu〉

=
∂

∂u

(
Fv −

Gu

2

)
−
(
∂

∂v
〈xuv,xu〉 − 〈xuv,xuv〉

)
= Fuv −

Guu

2
−
(
∂

∂v

Ev
2
− 〈xuv,xuv〉

)
= −Evv

2
+ Fuv −

Guu

2
+ 〈xuv,xuv〉
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which implies

〈xuu,xvv〉 − 〈xuv,xuv〉 = −Evv
2

+ Fuv −
Guu

2
.

Therefore

K(EG−F 2)2 =


∣∣∣∣∣∣∣∣∣∣
−Evv

2
+ Fuv −

Guu

2

Eu
2

Fu −
Ev
2

Fv −
Gu

2
E F

Gv

2
F G

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
0

Ev
2

Gu

2
Ev
2

E F

Gu

2
F G

∣∣∣∣∣∣∣∣∣∣


as desire. If particular, if F = 0, then

K =
1

4E2G2

∣∣∣∣∣∣
−Evv −Guu Eu −Ev
−Gu E 0
Gv 0 G

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 Ev Gu

Ev E 0
Gu 0 G

∣∣∣∣∣∣


=
1

4E2G2

(
−EGEvv − EGGuu +GEuGu + EEvGv +GE2

v + EG2
u

)
= − Evv

4EG
− Guu

4EG
+
EuGu

4E2G
+
EvGv

4EG2
+

E2
v

4E2G
+

G2
u

4EG2
.

Observe that 
(

Ev√
EG

)
v

=
Evv√
EG
− E2

v

2E
√
EG
− EvGv

2G
√
EG(

Gu√
EG

)
u

=
Guu√
EG
− G2

u

2G
√
EG
− EuGu

2E
√
EG

.

Hence (
Ev√
EG

)
v

+

(
Gu√
EG

)
u

=
Evv√
EG
− E2

v

2E
√
EG
− EvGv

2G
√
EG

+
Guu√
EG
− G2

u

2G
√
EG
− EuGu

2E
√
EG

= −2
√
EG

(
− Evv

4EG
+

E2
v

4E2G
+
EvGv

4EG2
− Guu

4EG
+

G2
u

4EG2
+
EuGu

4E2G

)
= −2K

√
EG

and the result follows.
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Note that for any regular surface, there is always a parametrization with
F = 0 identically zero.

One may ask whether the converse of theorema egregium holds. The
answer is negative. For example, it is known that there exists constant
Gaussian curvature surface which is not isometric to any part of a sphere.

3.6 Gauss-Bonnet theorem

In this section, we explain the Gauss-Bonnet theorem. The theorem is im-
portant because it relates a local quantity, the Gaussian curvature, with a
global quantity, the Euler characteristic, of a surface. It can also be inter-
preted as an analogue of Theorem 2.3.16 for surfaces. To state the theorem,
we introduce the notion of Euler characteristic. For a closed surface S, a
polyhedron modeled on S is a polyhedron whose vertices, edges, faces are
points, curves, regions on the surface S.

Definition 3.6.1 (Euler characteristic). The Euler characteristic of a
closed surface S is

χ(S) = v − e+ f

where v, e and f are the number of vertices, edges and faces of a polyhedron
modeled on S.

Given a closed surface S, one can find many different polyhedrons mod-
eled on S but it can be proved that χ(S) does not depend on the choice
of models. Two surfaces have the same Euler characteristic if one can de-
form the surface to another without stretching. Thus Euler characteristic
is a topological invariant11. For example, a sphere S2 has Euler character-
istic χ(S2) = 2 which means any polyhedron modeled on S2 would have
v − e + f = 2. Before we prove this fact, we derive a formula for area of
polygons on the unit sphere.

Theorem 3.6.2 (Area of polygon on unit sphere). Let α, β, γ be the interior
angles of a triangle, with edges being great circular arcs12, on the unit sphere
and A be the area of the triangle. Then

α + β + γ = A+ π.

11More precisely if S1 and S2 are homeomorphic, which means there exists bijective map
f : S1 → S2 such that both f and f−1 are continuous, then χ(S1) = χ(S2).

12A great circle on the unit sphere is a circle on the sphere with radius 1.
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More generally, Let α1, α2, . . . , αn be the interior angles of a polygon with n
edges, which are great circular arcs, on the unit sphere and A be the area of
the polygon. Then

α1 + α2 + · · ·+ αn = A+ (n− 2)π.

Proof. The second statement follows readily from the first by a standard
argument of cutting the polygon into n − 2 triangles. To prove the first
statement, consider a region on the unit sphere which is bounded by 2 great
semicircles with both interior angles equal α. The region occupied α/2π of
the surface of the sphere and thus has an area of

α

2π
× 4π = 2α.

We will call such a region a biangle with interior angle α.

Figure 18: Biangle on sphere

Now extend the 3 edges of the triangle to great circles on the sphere
which cut the sphere into 8 regions. One may use 2 of the 8 regions to form a
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biangle with interior α and two such biangles can be obtained. Similarly, we
get two biangles with interior angle β and two biangles with interior angle
γ. All 6 biangles obtained in this way cover (See Figure 19) the unit sphere
with 4 extra triangles with interior angles α, β, γ.

Figure 19: Triangle on sphere

By considering the total area of them, we get

2× 2α + 2× 2β + 2× 2γ = 4π + 4A

where A is the area of the triangle with interior angles α, β, γ which implies

α + β + γ = π + A.

Now we prove that the Euler characteristic of a sphere is 2.

Theorem 3.6.3 (Euler characteristic of sphere). A polyhedron which is mod-
eled on a sphere has Euler characteristic χ = 2.



Towards Differential Geometry 136

Proof. Consider a polyhedron modeled on the unit sphere. By deforming
the edges, we may assume that the edges are great circular arcs on the unit
sphere. Let v, e and f be the number of vertices, edges and faces of the
polyhedron. Suppose the k-th face, k = 1, 2, . . . , f , is a polygon with ek
edges, ek interior angles αk1 , αk2 , . . . , αkek and has area equal to Ak. By
Theorem 3.6.2, we have

ek∑
i=1

αki = (ek − 2)π + Ak.

Figure 20: Polygon on sphere

Summing up the above equalities for k = 1, 2, . . . , f , we have

f∑
k=1

ek∑
i=1

αki =

f∑
k=1

ekπ − 2

f∑
k=1

π +

f∑
k=1

Ak.

Now the sum of all interior angles of all faces is equal to 2π times the number
of vertices v which gives

f∑
k=1

ek∑
i=1

αki = 2πv.
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The sum of all ek, k = 1, 2, . . . , f , is equal to 2 times the total number of
edges e of the polyhedron and we obtain

f∑
k=1

ekπ = 2πe.

Furthermore, the sum of the area of all faces is equal to the area of the unit
sphere and we have

f∑
k=1

Ak = 4π.

Combining the above equalities, we have

2πv = 2πe− 2πf + 4π

v − e+ f = 2

By the classification theorem of closed surfaces, simple closed surfaces in
R3 are completely classified by its genus g. Intuitively, speaking the genus
of a closed surface is the number of ‘holes’ of the surface. For example, a
sphere has genus 0, a torus has genus 1 and one obtains a surface of genus
g by gluing g tori together. The Euler characteristic of a closed surface in R
can be determined by its genus.

Theorem 3.6.4 (Euler characteristic of simple closed surface). Let S be a
simple closed surface of genus g. Then the Euler characteristic of S is

χ(S) = 2− 2g.

Proof. We have proved that the sphere S2, which has genus 0, has Euler
characteristic χ(S2) = 2 (Theorem 3.6.3). Now we calculate the Euler char-
acteristic of a torus T which has genus 1. One may construct a polyhedron
modeled on a torus with 9 vertices, 18 edges and 9 faces. Therefore

χ(T ) = 9− 18 + 9 = 0.

Next we observe the change in Euler characteristics when gluing two surfaces.
Let S1 and S2 be two closed surfaces. We may remove a circular region from
each surface and glue the two surfaces together along the boundaries of the
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two regions. We denote the new surface obtained in this way by S1#S2

and call it the connected sum of S1 and S2. Let v1, e1, f1 and v2, e2, f2 be
the number of vertices, edges, faces of polyhedrons modeled on S1 and S2

respectively. One may find such polyhedrons so that the regions removed on
the two surfaces are polygons with k edges. When gluing the two surfaces,
k vertices, k edges and 2 surfaces have been removed. Thus the resulting
polyhedron modeled on S1#S2 has v1 + v2− k vertices, e1 + e2− k edges and
f1 + f2 − 2 faces. Hence the Euler characteristic of S1#S2 is

χ(S1#S2) = (v1 + v2 − k)− (e1 + e2 − k) + (f1 + f2 − 2)

= v1 − e1 + f1 + v2 − e2 + f2 − 2

= χ(S1) + χ(S2)− 2.

Now a closed surface Sg in R3 of genus g is obtained by gluing g − 1 tori to
a torus. Every time we glue one torus to a surface, the Euler characteristic
is decreased by 2. Therefore the Euler characteristic os Sg is

χ(Sg) = 0− 2(g − 1) = 2− 2g.

To prove the Gauss-Bonnet theorem, we introduce one more definition.
Let S1 and S2 be two simple closed surface in R3. Let f : S1 → S2 be a
continuous map from S1 to S2. For q ∈ S2, we define the degree of f at q to
be the integer

deg(f, q) =
number of preimages of q preserving orientation
−number of preimages of q reversing orientation

.

It can be proved that this integer are the same for almost all points q ∈ S2.
We call it the degree of f and denote it by deg(f). Intuitively, if the degree
of f : S1 → S2 is k, the first surface covers the second surface k times via
f . Now let S be a simple closed regular surface in R3 and n : S → S2 be
its Gauss map. To calculate the degree of Gauss map, it is useful to note
that for any p ∈ S, the Gauss map n is orientation preserving at p if the
Gaussian curvature at p is positive and is orientation reversing at p if the
Gaussian curvature at p is negative. Thus one needs to find the number of
points with positive and negative Gaussian curvature with a given normal
direction. It turns out that the degree deg(n) of the Gauss map depends
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only on the genus g of S. To see this, let Sg be another simple closed surface
of genus g. One may always deform S continuously to obtain Sg and the
degree of Gauss map in the process would remain constant. This is because
the degree changes continuously when one deforms the surface continuously
and degree takes only integer values. This implies that the degree of Gauss
map must be constant when the surface is being deformed. The degree of
Gauss map depends on the genus g in the following way.

Theorem 3.6.5 (Degree of Gauss map of simple closed regular surface). Let
S be a simple closed surface of genus g. The the degree of Gauss map of S is

deg(n) = 1− g.

Proof. It is not difficult to see that there exists a surface Sg of genus g such
that there are exactly g + 1 points on Sg with unit normal vector (0, 0, 1),
where g of them are orientation reversing, that is, having negative Gaussian
curvature, and the remaining 1 of them is orientation preserving, that is,
having positive Gaussian curvature. Now the degree of Gauss map of S is
equal to that of Sg which is equal to 1− g.

We are ready to state and prove the Gauss-Bonnet theorem.

Theorem 3.6.6 (Gauss-Bonnet theorem). Let S be a simple closed regular
surface in R3. Then ∫∫

S

KdA = 2πχ(S)

where K is the Gaussian curvature, χ(S) is the Euler characteristic of S
and dA =

√
det(I)dudv is the surface area element. In particular, if S is

homeomorphic13 to the sphere S2, then χ(S) = 2 and∫∫
S

KdA = 4π.

13That means there exists a bijective map f : S → S2 from S to the sphere S2 such
that both f and f−1 are continuous.
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Proof. We have∫∫
S

KdA =

∫∫
S

dσ

dA
dA (Proposition 3.4.4)

=

∫∫
S

dσ

= deg(n)

∫∫
S2

dσ

= (1− g)(4π) (Theorem 3.6.5)

= 2π(2− 2g)

= 2πχ(S) (Theorem 3.6.4)

Exercise 3

1. Prove that a regular parametrized surface in R3 is contained in a plane
if and only if the unit normal vector n is constant.

2. Prove that a regular parametrized surface in R3 is part of a sphere if
and only if all normal vectors pass through a fixed point.

3. Find the first fundamental form and the surface area of the following
parametrized surface.

(a) x(u, θ) = (u cos θ, u sin θ, u2), u ∈ (0, 1), θ ∈ (0, 2π).

(b) x(u, θ) = (u3 cos θ, u3 sin θ, u), u ∈ (0, 1), θ ∈ (0, 2π).

(c) x(u, θ) = (u cos θ, u sin θ, θ), u ∈ (−1, 1), θ ∈ (0, 2π).
(You may use

∫ √
x2 + 1 dx = 1

2
(x
√
x2 + 1 + ln(x+

√
x2 + 1)) +C

directly.)

4. Prove that the area of the surface define by z = f(r, θ), (r, θ) ∈ D,
where (r, θ) is the polar coordinates on the xy-plane such that (x, y) =
(r cos θ, r sin θ), is given by∫∫

D

√
r2 + r2f 2

r + f 2
θ drdθ
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5. Let x(u, v) be a regular parametrized surface. Let r(t) = x(u(t), v(t)),
a < t < b, be a curve lying on the surface. Prove that the arc length
of r(t) is ∫ b

a

√(
u̇ v̇

)
I

(
u̇
v̇

)
dt

where I is the first fundamental form of x(u, v).

6. Find the second fundamental form and the Gaussian curvature of the
following parametrized surface.

(a) x(u, v) = (u2 − v2, 2uv, u2 + v2), u ∈ R, v > 0.

(b) (Enneper surface) x(u, v) = (u− u3

3
+uv2,−v+ v3

3
−u2v, u2− v2),

u, v ∈ R.

(c) (Torus) x(φ, θ) = ((R + r sinφ) cos θ, (R + r sinφ) sin θ, r cosφ),
φ, θ ∈ (0, 2π), where R, r are constants.

7. Prove that the Gaussian curvature of the surface defined by z = f(x, y)
is

K(x, y) =
fxxfyy − f 2

xy

(1 + f 2
x + f 2

y )2

8. Prove that the Gaussian curvature of the surface defined by z = f(r, θ)
in the cylindrical coordinates, where (r, θ) is the polar coordinates in
the xy-plane such that (x, y) = (r cos θ, r sin θ), is given by

K(r, θ) =
r2frr(rfr + fθθ)− (rfrθ − fθ)2

(r2 + r2f 2
r + f 2

θ )2

9. Let r(s) be an arc-length parametrized space curve. The tangent devel-
opable surface of r is the surface parametrized by x(s, t) = r(s)+ tT(s)
where T(s) is the unit tangent vector. Prove that the Gaussian curva-
ture of a tangent developable surface is always zero.

10. Let r(t) = (x(t), y(t)) be a regular parametrized curve on the xy-
plane. The conical surface spanned by the curve r(t) is the surface
parametrized by x(u, v) = (vx(u), vy(u), v), v ∈ (0,+∞). Prove that
the Gaussian curvature of the conical surface is 0.
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11. Let f(u) be a second differentiable function and x(u, θ) = (u cos θ, u sin θ, f(u)),
u > 0, θ ∈ (0, 2π), be a parametrized surface.

(a) Prove that the Gaussian curvature of the surface is

K(u) =
f ′f ′′

u(1 + f ′2)2

(b) Prove that

− 1

2u

d

du

(
1

1 + f ′2

)
= K(u)

(c) Suppose f(u) is a function such that

f ′(u) =

√
9 + u2

16− u2

Prove that K is a constant and find the constant.

(This exercise shows that a surface with constant positive Gaussian
curvature may not necessarily be a sphere.)

12. Find the Gaussian curvature of the parametrized surface x(u, v) with
the following first fundamental form.

(a) I =

(
1
u2

0
0 1

u2

)
(b) I =

(
1

u2+v2+1
0

0 1
u2+v2+1

)
(c) I =

(
1 0
0 cosh2 u

)
13. Suppose the first fundamental form of a parametrized surface x(u, v)

is

I =

(
f 2 0
0 f 2

)
where f = f(u, v) > 0 is a second differentiable function. Show that
the Gaussian curvature of the surface is

K = − 1

f 2

(
∂2

∂u2
+

∂2

∂v2

)
ln f
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14. Find the mean curvature of the following parametrized surface.

(a) x(u, v) = (u, v, uv), u, v ∈ R.

(b) (Torus) x(φ, θ) = ((R + r sinφ) cos θ, (R + r sinφ) sin θ, r cosφ),
φ, θ ∈ (0, 2π), where R > r > 0 are constants.

(c) (Helicoid) x(u, θ) = (au cos θ, au sin θ, bθ), u, θ ∈ R where a, b > 0
are constants.

15. Prove that the surface defined by z = f(x, y) is a minimal surface if
and only if

(1 + f 2
x)fyy − 2fxfyfxy + (1 + f 2

y )fxx = 0

16. Let x(u, v) be a regular parametrized surface. Let r(s) = x(u(s), v(s))
be a curve lying on the surface parametrized by arc length. Prove that

κ〈N(s),n(s)〉 =
(
u̇ v̇

)
II

(
u̇
v̇

)
where κ is the curvature of r(s), N is the unit normal vector to the
curve, n is the unit normal vector to the surface, II is the second
fundamental form of the surface, u̇ and v̇ are the derivatives of u and
v with respect to s respectively.

17. Consider the surface obtained by rotating the curve on the xz-plane
defined by x = f(z), a < z < b, along the z-axis.

(a) Prove that the area of the surface is given by

2π

∫ b

a

f
√

1 + f ′2 dz

(b) Prove that the Gaussian curvature of the surface is

K = − f ′′

f(1 + f ′2)2

(c) Prove that the mean curvature of the surface is

H =
ff ′′ − f ′2 − 1

2f(1 + f ′2)
3
2
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18. For each of the surface S, calculate
∫∫

S
KdA, where K is the Gaussian

curvature and dA is the area element of S.

(a) (Helicoid) x(u, θ) = (u cos θ, u sin θ, θ), u ∈ (0, 1), θ ∈ (0, 2π).

(b) (Ellipsoid) x(ϕ, θ) = (a sinϕ cos θ, a sinϕ sin θ, b cosϕ), ϕ ∈ (0, π
2
),

θ ∈ (0, 2π).

(Hint:

∫
sinϕ

(a2 cos2 ϕ+ b2 sin2 ϕ)
3
2

dϕ = − cosϕ

b2
√
a2 cos2 ϕ+ b2 sin2 ϕ

+

C.)

19. Consider the surface obtained by rotating the arc length parametrized
curve (x, z) = (ϕ(s), ψ(s)), s ∈ (0, l), ϕ(s) > 0, on the xz-plane, along
the z-axis with parametrization

x(s, θ) = (ϕ(s) cos θ, ϕ(s) sin θ, ψ(s)), for s ∈ (0, l), θ ∈ (0, 2π)

(a) Find the second fundamental form of the surface.

(b) Prove that the Gaussian curvature of the surface is given by

K = −ϕ
′′

ϕ

(c) Prove that the mean curvature of the surface is given by

H =
ϕψ′′ + ϕ′ψ′

2ϕϕ′

(d) Prove that the surface is a minimal surface if and only if ϕψ′ is
constant.

(e) Suppose the surface is a minimal surface and ψ(s) = sinh−1 s =
ln(s+

√
s2 + 1). Find ϕ(s).

20. Let x(u, v) be a regular parametrized surface and n = xu×xv

‖xu×xv‖ be the
unit normal vector. Let

I =

(
E F
F G

)
=

(
〈xu,xu〉 〈xu,xv〉
〈xv,xu〉 〈xv,xv〉

)
II =

(
e f
f g

)
=

(
〈n,xuu〉 〈n,xvu〉
〈n,xuv〉 〈n,xvv〉

)
=

(
−〈nu,xu〉 −〈nu,xv〉
−〈nv,xu〉 −〈nv,xv〉

)
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be the first and second fundamental form respectively. Suppose

nu = a11xu + a12xv

nv = a21xu + a22xv

(a) Prove that

II = −
(
a11 a12

a21 a22

)
I

(b) Prove that

nu × nv =

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣xu × xv =
eg − f 2

EG− F 2
xu × xv

(This exercise shows that nu × nv = Kxu × xv.)

(c) Prove that

xu×nv+nu×xv = (a11+a22)xu×xv = −
(
eG− 2fF + gE

EG− F 2

)
xu×xv

(This exercise shows that xu × nv + nu × xv = −2Hxu × xv.)

21. Let x(u, v) be a regular parametrized surface. A parallel surface of x
is a surface parametrized by

y(u, v) = x(u, v) + an(u, v)

where n = xu×xv

‖xu×xv‖ is the unit normal vector of x(u, v) and a is a
constant.

(a) Prove that

yu × yv = (1− 2Ha+Ka2)xu × xv

where K and H are the Gaussian and mean curvature of x respec-
tively.

(b) Prove that the unit normal vector to y is n.

(c) Prove that at a regular point, the Gaussian curvature of y is

K

1− 2Ha+Ka2
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(d) Prove that at a regular point, the mean curvature of y is

H −Ka
1− 2Ha+Ka2

(e) Prove that if the mean curvature H of x is a nonzero constant,
then there exists a such that y has constant Gaussian curvature.

22. Let r(s), s ∈ [0, l] be a regular simple closed space curve parametrized
by arc length. A tubular surface is a surface S parametrized by

x(s, θ) = r(s) + a cos θN(s) + a sin θB(s)

where N(s) and B(s) are the unit normal and binormal to the curve
at r(s) respectively, and a is a constant.

(a) Prove that x is regular if aκ(s) < 1 for any s, where κ(s) is the
curvature of the curve at r(s).

(b) Prove that the Gaussian curvature of the surface is given by

K(s, θ) = − κ(s) cos θ

a(1− aκ cos θ)

(c) Find ∫∫
S

KdA =

∫ 2π

0

∫ l

0

K(s, θ)‖xs × xθ‖dsdθ

(d) Find the Euler’s characteristic of the tubular surface S.
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characteristic polynomial, 36
circle, 62
cofactor, 13
conjugate transpose, 47
cross product, 19
curvature

catenary, 79
circle, 77
curve, 73
cycloid, 77
Gaussian, 104
graph of function, 78
helix, 78
mean, 122
normal, 125
principal, 120

signed, 82
curve

arc length parametrized, 66
catenary, 79
circle, 62
cycloid, 62, 77
helix, 63, 78
plane, 62, 89
regular parametrized, 61
simple closed, 82
space, 62
straight line, 62
tractrix, 69, 93

cycloid, 62, 77

degree of map between surfaces, 138
determinant, 7
determinant of linear operator, 47
diagonal matrix, 5
diagonalize, 38
differential of Gauss map, 119
dimension, 28
dot product, 16

eigenvalue, 36, 47
eigenvector, 36, 47
equivalence relation, 37
Euclidean space, 16
Euler characteristic, 133
exponential function, 53
extreme value theorem, 49

first fundamental form, 96
Frenet formula, 88
Frenet frame, 87
fundamental theorem of algebra, 40
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fundamental theorem of space curves,
91

Gassian curvature
torus, 109

Gauss map, 115
Gauss-Bonnet theorem, 139
Gaussian curvature, 104

catenoid, 109
graph of function, 106
helicoid, 113
pseudosphere, 110
sphere, 104
surface of revolution, 107
torus, 105

genus, 137
geometric multiplicity, 39

helicoid, 96, 113
helix, 63, 78
Hermitian matrix, 48
homogeneous equation, 5
hyperbolic functions, 53

identity matrix, 5
inner product, 43
inverse, 6
invertible matrix, 6
isometric, 128
isometry, 128

Jacobi identity, 20
Jordan curve theorem, 82

linear transformation, 32
linearly dependent, 22
linearly independent, 22
logarithmic function, 54

matrix, 2

matrix addition, 2
matrix multiplication, 3
matrix representation, 33, 45
mean curvature, 122
minimal surface, 122

nonsingular, 30
nontrivial solution, 5
norm, 17
normal curvature, 125
normal vector, 72

ordered basis, 44
orthogonal, 19
orthogonal complement, 49
orthogonal matrix, 33
orthonormal basis, 34

parallelogram law, 18
plane curve, 62, 89
positively oriented, 82
principal curvature, 120
principal direction, 120
pseudosphere, 110

regular parametrized curve, 61
regular parametrized surface, 95
regular surface, 95
rigid transformation, 35

scalar multiplication, 2, 16
scalar product, 16
scalar triple product, 20
second fundamental form, 103
self-adjoint, 47
signed curvature, 82
similar matrices, 37
simple closed curve, 82
singular, 30
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skew-symmetric matrix, 5
space curve, 62
span, 22
special orthogonal matrix, 34
spectral theorem, 50, 52
sphere, 95
square matrix, 6
standard basis, 26
straight line, 62
subspace, 21
surface

catenoid, 109
helicoid, 96, 113
minimal, 122
pseudosphere, 110
regular, 95
regular parametrized, 95
sphere, 95
torus, 96

surface area, 97
graph of function, 101
sphere, 99
surface of revolution, 102
torus, 99

symmetric matrix, 5

tangent space, 95
tangent vector, 71
theorem

Cayley-Hamilton, 42
fundamental, of algebra, 40
fundamental, space curves, 91
Gauss-Bonnet, 139
Jordan curve, 82
spectral, 50, 52
theorema egregium, 128

theorema egregium, 128
torsion, 87

torus, 96
trace, 15
trace of linear operator, 47
tractrix, 69, 93, 110
transpose, 4
triangle inequality, 18
trigonometric functions, 53
trivial solution, 5
trivial subspace, 22

unit normal vector, 72, 102
unit tangent vector, 71
unit vector, 17
unitary matrix, 48

vector addition, 16
vector product, 19
vector subspace, 21
vector valued function, 31

zero matrix, 5
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