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1 Preliminary

In this chapter, we review some basic knowledge in linear algebra and all
materials here can be found in any introductory book on linear algebra.

1.1 Matrices

Definition 1.1.1 (Matrix). Let m and n be positive integers. An m X n
matrix over R (C) is a rectangular array of the form

11 Q12 - Qip

Q21 Q22 -+ Aoy
A=

Am1 Am2 *° Omn

where a;j, 1 <1 <m, 1 <j<n, are real (complex) numbers. We may also
write a matriz as A = [a;j).

Definition 1.1.2 (Matrix operations).

1. Matrix addition: Let A = [a;;] and B = [b;;] be two m X n matrices.
Then

In other words

aixz Qa2 - Qin bii bz -+ bip

a21 Q22 -+ Q2 by bay - Doy
+ .

Am1 Am2 - Qmnp bml bm2 tet bmn

ayp +bnn aipg+biz - a, + by,

ag) +ba1  age by - ag, + by,

am1 + bml Am2 + bm2 ot Qmn + bmn

2. Scalar multiplication: Let A = [a;;] be a m x n matriz and ¢ be a
real (complex) number. Then

[cA]ij = cay;
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In other words

11 Q2 - Qip ca1n  Cayz - CAip

Q21 Q22 -+ QAgp Clg1 CQzo -+ Cl2n
c = . .

Am1 Am2 °*° Amn Cm1 CQm2 -+ Chmp

3. Matrix multiplication: Let A = [a;;] be an m x n matriz and B =

[bjk] be an n x p matriz. The matriz product of A and B is an m X p
matrix and

n

[ABix = Z ;b = @by + aiobog + - -+ + Qinbpg

i=1

for1 <i<m,1<k<p. Note that the ik-th entry of AB is the sum
of the products of the corresponding entries in the i-th row of A and
the k-th column of B.

Example 1.1.3. If A is a 3 X 2 matriz and B is a 2 X 2 matriz, then

aip a2 b b a11011 4 a12b21  a11b12 + ajabag
11 012

Qo1 A9 ( b b ) = a21011 4 agebar  ag1bia + ageba
21 D22

aszy Aas2 a31011 4 asebar  asibia + aseba

18 a 3 X 2 matriz.
Remarks 1.1.4. Let A, B, C be matrices.

1. AB is defined only when the number of columns of A is equal to the
number of rows of B.

2. In general, AB # BA even when they are both defined and of the same
type.

3. In general, AB = 0 does not implies that A =0 or B = 0.
4. In general, AB = AC and A # 0 does not implies B = C.

Proposition 1.1.5 (Properties of matrix multiplication). The following equal-
ities hold true whenever the expressions involved are defined.
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1. (AB)C = A(BC)
2. (A+B)C=AC+ BC and C(A+ B)=CA+CB
3. ¢(AB) = (cA)B = A(cB)

Proof. We prove the associativity of matrix multiplication. The other two
properties are obvious. Write A = [a;;], B = [bjx], C = [cji]. Then

(AB)Cla = > [ABlucu

k

— Z (Z aijbjk) Chi

= < am kckl>
k

= < Q5 ]kckzl>
J

= Z 2% <; bjk%l)
= Y ay[BCy

= [A(BO)a
Therefore (AB)C' = A(BC). O

Definition 1.1.6 (Transpose). The transpose of an m xn matriz A = [a;;]
is the n x m matriz AT obtained by interchanging rows and columns of A,
1.€.,

[AT]ji = ayy
for1<i<m,1<j<n.
Proposition 1.1.7 (Properties of transpose). Let A and B be matrices.
1. (AT =A
2. (A+ B)T = AT + BT
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3. (cA)T = cAT
4. (AB)T = BT AT

Definition 1.1.8 (Symmetric and anti-symmetric matrices). Let A be an
n X n matriz.

1. We say that A is a symmetric matrix if AT = A.

2. We say that A is an anti-symmetric matrix (or a skew-symmetric
matrix) if AT = —A.

Definition 1.1.9 (Diagonal matrix). An n X n matriz of the form

a1 0

22

0

15 called o diagonal matrix.

Definition 1.1.10 (Zero matrix and identity matrix). Let m, n be a positive
integers.

1. The m x n zero matrix is the matrix which every entry equals to 0.

2. The identity matrix of size n is the matrix

The zero matrix is the identity with respect to addition, that means,
A4+0=0+4+ A = A for any m x n matrix A. The identity matrix is the
identity with respect to matrix multiplication, that means, Al = [A = A for
any n X n matrix A.

Let A be an m x n matrix. The homogeneous equation Ax = 0 always
has the solution x = 0 which is called the trivial solution. If m < n, the
equation Ax = 0 always has a nontrivial solution x # 0.
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Proposition 1.1.11. Suppose A is an m X n matriz where m < n. Then
the homogeneous equation Ax = 0 has a nontrivial solution x # 0.

Proof. Using Gaussian elimination, one may reduce the matrix A to a row
echelon form. There are at most m columns which contain leftmost nonzero
leading entries. Since m < n, there is at least one column, say the k-th
column, which does not contain a nonzero leading entry. Then there is a
nontrivial solution whose k-th coordinate is nonzero. O]

Definition 1.1.12 (Matrix inverse). An n X n matriz A is said to be in-
vertible, if there exists a matrizv A~ called the inverse of A such that

AATT=ATTA=1T
where I s the identity matriz.

Inverse only makes sense for square matrix, that is, an n x n matrix.
We know that any nonzero number has a multiplicative inverse, but inverse
of a nonzero square matrix does not always exist. However the inverse of a
matrix is unique whenever it exists. In the next section, we will discuss an
important condition for the existence of inverse of a matrix.

Proposition 1.1.13 (Properties of inverse). Let A and B be two invertible
n X n matrices over real (complex) numbers.

1. The inverse A~' is invertible and (A=1)~1 = A

2. For any nonnegative integer k, A¥ is invertible and (A¥)=t = (A1),
This allows us to define A~F = (A~1)*.

3. For any nonzero real (complex) number c, cA is invertible and (cA)™' =
C—IA—I

4. The product AB 1s invertible and

(AB) ™' =pBtA™!

5. AT s invertible and

(AT)—l — (A_l)T
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1.2 Determinant

In this section, we discuss determinant of a square matrix. Determinant can
be defined in many different ways. Here we adopt the inductive definition.

Definition 1.2.1 (Determinant). Let n be a positive integer and

ai; Q2 -+ Qip

ag1 Q22 -+ QA2
A=

Ap1 Qp2 - App

be an n x n matriz. The determinant of A is denoted by

aix Qa2 -+ Qip

a21 Q22 -+ A2
det(A) =| .

Ap1 Ap2 -+ Qpp

and is defined inductively by
1. Forn =1, we have det(A) = ay;.

2. Forn > 1, we have
det(A) = a1 det(Au) — a2 det(Alg) + e + (—1)"+1a1n det(Aln)

where A;;, 1 < i,7 < n is the submatriz of A obtained by deleting the
i-th row and the j-th column of A.

Example 1.2.2.

1. 1 x 1 determinant:
det((an)) = Q11

2. 2 x 2 determinant:

a11 a2
21 A22

= 11022 — Q12021
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3. 3 x 3 determinant:

@11 a2 13
Q21 Q22 Q23
a31 dazz G33

Q21 Q22
a31 a3z

Q21 A23
31 A3z

Q2 Qa23

+ a13
agz2 a33

= a1 — Q12

= G11(G226L33 - CL23CL32) - G12(a21a33 - a23a31) + a13(a21a32 - a22a31)

= (11022033 — 11023032 — (12021033 + 12023031 + Q13021032 — Q13022031

In the definition, we define determinant inductively by expansion along
the first row. In fact we can find the value of det(A) by expanding along any
row or column of A. We have for any fixed i =1,2,--- | n,

det(A)

n

= Y (=D)™aj; det(Ay)

7j=1
= (-1)i+1&l’1 det(Aﬂ) + (—1)”%12 det(Alg) 4+ -+ (—1)””am det(Am)

and for any fixed j =1,2,--- ,n,

det(A)
= Zn:(—l)“_jaij det(Aij)

= (=1)"ay;det(Ay;) + (=1)*7ag; det(Az;) + - + (=1)"a,; det(A,;)

Example 1.2.3. We can calculate a 4 X 4 determinant as follows. Here in
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the first step, we expand the determinant along the second column.

2 4 -2 6
12 5 4
11 2 4
02 —6 3
1 5 4 2 -2 6 2 -2 6 2 -2 6
= 41 2 4|+2|1 2 4|-|1 5 4|+2|/1 5 4
0 —6 3 0 —6 3 0 —6 3 1 2 4
2 4 5 4 2 4 2 6
S (ERIR )R C IR )
5 4 2 6 5 4 —2 6 —2 6
ORI R G H R P )
= —4(30 — 39) + 2(60 — 30) — (78 — 30) + 2(24 — (—20) + (—38))

= 60

The above calculation of determinant is not very efficient. Later we will
discuss more efficient methods of finding determinant.

There is a direct formula for determinant and it can be proved by induc-
tion on n.

Proposition 1.2.4 (Direct formula for determinant). Let n be a positive
integer and A = [a;;]. Then

det(A) = Z Sign(a)ala(1)a20(2) * Anpo(n)

oESy

where S, is the set of all permutatz’onsﬂ of 1,2,-+- ,n and sign(o) = 1,—1
when o is a composition of even, odd number of tmnspositionﬂ respectively.

The formula in the above proposition can be used as an alternative defi-
nition of determinant. It has an advantage of having a simple and symmetric
form. Some properties of determinant, e.g. skew-symmetry, can be proved

I'Note that the number of elements in S,,, and hence the number of terms in the formula,
is nl.

2 A transposition is a permutation which interchanges two numbers and leaves the other
numbers unchange. It can be proved that sign(o) does not depend on how o is written as
composition of transpositions.
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easily using the formula. However it is not very efficient to use the formula
to calculate the value of determinant.

Next we explain another important way of interpreting the determinant.
Write

A =lay,ay,...,a,]
where a;,as,...,a, are column vectors of A. We may consider det(A) as
a real valued function of a;,a,,...,a,. Then the determinant is a function

from (R™)" = R" xR" x - - - X R"™ to R which is characterized by the following
properties.

Theorem 1.2.5 (Characterizing properties of determinant). The determi-
nant det : (R™)" — R is a function characterized by the following properties.

1. (Multilinearity) For any k =1,2,...,n and o, 5 € R
detlay,...,ap_1,0u+ OV, a51,...,a,)
= «adet|ay,..., a5 1,0,8,41,...,8,] + Fdet[a, ... a5 1,V,a511,...,a,]
2. (Anti-symmetry) For any 1 <i < j <n,

detlay, ..., a;,...,a4,...,a,] = —det[ay,...,a;,...,a;...,a,]

3. (Determinant of identity) We have
det[el,eg, c. ,en] =1

where
e;=(0,...,0,1,0...,0)" € R"

1s the n column vector with the i-th entry equals to 1 and all other
entries equal to 0. In other words, det(I) = 1 where I is the n X n
tdentity matriz.

Furthermore, if f : (R")" — R is a function which is multilinear, anti-
symmetric and satisfies

flei,es, ..., e,) =k,

then
fvi,va, ..o vy) = kdet(vy, va, ..., vy)

for any vi,vay,...,v, € R".
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Proof. It follows readily by the formula for determinant (Proposition
that det satisfies the three properties. Suppose f : (R™)” — R is a function
which is multilinear, anti-symmetric and satisfies f(eq,es,...,e,) = k. Con-
sider the function ¢ = f — kdet. Then g is multilinear, anti-symmetric
and satisfies g(e;,es,...,e,) = 0. Now the anti-symmetry implies that
g(ei,€,,...,e, ) = 0 where iy,iy,...,4, is any permutation of 1,2 ... n.
Then it follows by multilinearity that g(vq,va,...,v,) = 0 for any vectors
Vi,Va,...,V, € R". Therefore f = k det. O]

In practice, we usually do not use definition to calculate the determi-
nant because it is not efficient. In stead, we use elementary row or column
operations and the following proposition allows us to do so.

Proposition 1.2.6 (Determinant under row and column operations). Let A
be an n X n matriz.

1. If B is obtained from A by multiplying a single row (or column) of A
by a constant k, then det(B) = kdet(A).

2. If B is obtained from A by interchanging two rows (or columns) of A,
then det(B) = — det(A).

3. If B is obtained from A by adding a constant multiple of one row (or
column) of A to another row (or column) of A, then det(B) = det(A).
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Example 1.2.7. We can calculate a 4 x 4 determinant as follows.

2 4 -2 6 12 -1 3
L2 5 4 /12 5 4
11 2 4 11 2 4
02 —6 3 02 —6 3
1 2 -1 3
_ o0 0 61
— 7lo -1 3 1
0 2 -6 3
-1 3 1
= 2] 0 6 1
2 -6 3
-1 31
= 2/ 0 6 1
0 05
6 1
__2(_1)‘05‘
= 2(30)
= 60

Determinant has the following further properties.

Proposition 1.2.8 (Further properties of determinant). Let A be an n X n

matriz.
1. If A has a row (or column) consisting entirely of zeros, then det(A) = 0.
2. If two rows (or columns) of A are identical, then det(A) = 0.
3. If A is an upper triangular matriz, that is,

ai *

22

0

Then det(A) = aj1a92 + -+ Gy In particular, the determinant of a diag-
onal matrix is the product of its diagonal entries.
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4. det(cA) = c"det(A) for any c € R. (Caution! det(cA) # cdet(A))
5. det(AT) = det(A)
The following property of determinant is important and is less obvious.
Proposition 1.2.9. Let A and B be two n x n matrices. Then
det(AB) = det(A) det(B).

Proof. Write
B =1[vi,va,...,Vy]

where vq, vy, ..., Vv, are column vectors of B and observe that
AB = [Avy, Avy, ..., Av,].
Consider vy, vy, ..., Vv, as variables of the function f : (R™)” — R defined by
f(vi,va, ..., v,) = det([Avy, Avy, ..., Av,]).
Then f is obviously multilinear and anti-symmetric. Moreover
f(e1,eq, ... e,) =det([Ae;, Aey, ..., Ae,]) = det(A)
where ey, e,,...,e, is the standard basis for R". Therefore

det(AB) = f(vi,va,...,V,)
det(A)det([vy, va, ..., v,]) (Theorem
= det(A)det(B).

Let A = [a;;] be an n x n matrix. We define the (7, j) cofactor by
Ay = (=1)"™ det (M)
where M;; is the submatrix of A obtained by deleting the i-th row and j-th

column of A. Observe that for any fixed i = 1,2,...,n,

Z a;jAij = ainAi + apAip + - - + a; Aiy, = det(A)

i=1
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since the left hand side is nothing but the expansion of determinant along
the i-th row. On the other hand, for k # ¢, we have

Z aijij = aklA“ + akQA@'Q + e+ aknAin =0

Jj=1

since the left hand side is the determinant of the matrix obtained by replacing
the i-th row by the k-th row which must be 0 because the ¢-th and the k-th
row are identical. Similarly, we have

Z Ajjai; = Ajjarj + Agjas; + - + Ayja,; = det(A)
i=1

and

Z Anai; = Anyarj + Agagj + -+ Anan; =0
i=1

for [ # j. The above equalities can be summarized into the following identity.

Proposition 1.2.10. Let A = [a;;] be an n x n matriz and adj(A) is the
adjugate matrix of A, that is [adj(A)];; = Aj; where A;j is the (i,7) cofactor
of A. Then

Aadj(A) = adj(A)A = det(A)I

where I is the n X n identity matriz.

Now we have a simple criterion for a matrix to be invertible and a formula
for the inverse of an invertible matrix.

Proposition 1.2.11. Let A = [a;;] be an n xn matriz. Then A is invertible,
that 1is, the inverse A~ of A ewists, if and only if det(A) # 0. Moreover if

A is invertible, then
1
-1

~ det(A)
where adj(A) is the adjugate matriz of A.

adj(A)

Proof. Suppose A is invertible. Then the inverse A~! of A exists and we have
AA™Y = A7'A =] Thus

det(A)det(A™") = det(]) = 1
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which implies det(A) # 0.
Suppose det(A) # 0. Then

A e = (opgedin ) A =1

Thus madj (A) is the inverse of A and hence A is invertible. O

Definition 1.2.12 (Trace). Let A = [a;;] be an n x n matriz. The trace of
A is defined by
tr(A) = ai + axn + -+ + app.

Proposition 1.2.13 (Properties of trace). Let A, B be n X n matrices and
k € R. Then

1. tr(A+ B) = tr(A) + tr(B)
2. tr(kA) = ktr(A)
3. tr(AB) = tr(BA)

Proof. The first two properties are obvious. For the third one, let A = [a;;]
and B = [b;;]. Then

tr(AB) = ) [ABJ;

= tr(BA)
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1.3 Vectors

In mathematics, the term vector refers to an element in any vector space. In
these notes, the only vector space we consider is the Euclidean space R".

Definition 1.3.1 (Euclidean space). Let n be a positive integer. The n
dimensional Euclidean space is the set

R" = {(z1,22,...,2,) : 2 €R for anyi=1,2,...,n}.

Definition 1.3.2 (Vector addition and scaler multiplication).

1. Vector addition: Let u = (u1,u,...,u,),v = (v1,09,...,0,) € R™,
Define
u+v=(u +v,U + V..., Uy + Vp).
2. Scalar multiplication: Let v = (vy,va,...,v,) € R" and o € R.
Define
av = (o, g, . .., o).

Next we define scalar product on R™ which will be used to define distance
between two points and angle between two vectors in R”.

Definition 1.3.3 (Scalar product). Letu = (uy,ug, ..., uy,),v= (v1,vs,...,0,)€E
R™. The scalar product, or dot product, of u and v is defined by

(U, v) = ugvg + ugvg + - - - + upvy.
Note that the scalar product of two vectors is a number, not a vector.

Proposition 1.3.4 (Properties of scalar product). Let u,v,w € R" and
a,B € R. Then

1. (Bilinear):
(ou+ v, w) = a(u,w) + [{v, w)

2. (Symmetric):
(v,u) = (u,v)

3. (Positive definite):
(v.v) 20

with equality holds if and only if v = 0.
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The following proposition is simple but has many important applications.
Proposition 1.3.5. Let v € R" be a vector. Suppose
(u,v) =0 for any u € R".
Then v = 0.

Proof. Take u = v. Then we have (v,v) = 0. Therefore v = 0. O

We may use scalar product to define norm which may be consider as
length of vectors.

Definition 1.3.6 (Norm). Let v = (vy,v9,...,v,) € R". The norm of v is

defined as
||V|| = \/<V,V> = \/U% +U% +...+U%_

Definition 1.3.7 (Unit vector). We say that v € R™ is a unit vector if
[vil = 1.

Theorem 1.3.8 (Cauchy-Schwarz inequality). For any u,v € R", we have
[(u, v)| < [Jall]|v]|
with equality holds if and only if u = 0 or v = au for some real number a.

Proof. Suppose u = 0. Then the inequality holds obviously. Suppose u # 0.
Consider the scalar product

(tu — v, tu — v) = t*(u, u) — 2t(u, v) + (v, V)

which is a quadratic expression in ¢ and is non-negative for any ¢t € R.
Therefore the discriminant satisfies

(2{u,v))? — 4(u,u)(v,v) <0

which means
(u,v)? < (u,u)(v,v)

Now equality holds if and only if there exists a € R such that [[au—v| =0
which means v = au. O
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Cauchy-Schwarz inequality has two applications. The first one is triangle
inequality.
Proposition 1.3.9 (Properties of norm). Let u,v € R" and o € R.
L lav]l = laf|[v]
2. ||v|l = 0 with ||v|| = 0 if and only if v = 0.
3. (Triangle inequality):

Ju+ v < [[uf + Iv]
4. (Parallelogram law):

(e +vi[* = ffu = v|[*)

| =

<11, V> =

Proof. The first two properties are obvious. We prove the triangle inequality
and parallelogram law.

3. (Triangle inequality)

[lu+v|]*> = (u+v,u+v)

= (u,u) +2(u,v) + (v,v)
|u|l® + 2[[ul|[|[v]| + [[v]|* (Cauchy-Schwarz inequality)
(Il + fIvih?®

IN

4. (Parallelogram law)

o+ vf* = flu = v

<u+v,u+v>—<u—v,u—v>

(hall® + 26w, v) + [[V]%) = (hall* = 2¢w, v) + [[v]*)
= 4(u,v)

]

The second application is that Cauchy-Schwarz inequality allows us to
define angle between two vectors.
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Definition 1.3.10 (Angle between two vectors). Let u,v € R" be two
nonzero vectors. The angle between u and v is the unique 6 € [0, 7] such
that

Note that the above definition makes sense, that is, there exists 6 € [0, 7]

such that cosf = m because m < 1 for any nonzero vectors u, v by

Cauchy-Schwarz inequality.

Definition 1.3.11 (Orthogonal vectors). Let u,v € R" be two vectors. We
say that u and v are orthogonal and write u L v if

(u,v) =0
Next we introduce a second kind of product which is defined only in R3,

Definition 1.3.12 (Cross product). Let u = (uy, ug, uz),v= (v1, vo, v3)€ R3
be two vectors in R3. The cross product, or vector product, of u and v
1s defined by

i j k
Ug Uz |. Uy us |. Uy U9
UXVv=|u Uy U = i— j+ k
V2 U3 U1 U3 V1 U2
U1 V2 U3

= (U2U3 — U3V2, U3V — U1V3, U V2 — Uzvl)
where i = (1,0,0),j=(0,1,0),k = (0,0, 1).
Proposition 1.3.13 (Properties of cross product).
1.ixj=k, jxk=ikxi=]j
2. (Bilinear) For any o, 3 € R and u,v,w € R3,

(ou+fv) X w=auxw+ vxw
3. (Anti-symmetric) For any u,v € R?,
vu=-—-uXxy

4. For anyu,v € R3, we haveu x v L u andu x v L v, that is

(uxv,u)=(uxv,v)=0
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5. For any u,v € R3,
u X v = |ul|||v]sinfn

where 0 is the angle between u and v, and n is the unit vector normal
to the plane spanned by u and v with direction determined by the right
hand rule. In other words,

(a) |[ux V| is equal to the area of the parallelogram spanned by u, v.

(b) u x v is normal to the plane spanned by u and v with direction
determined by the right hand rule.

6. (Jacobi identity) For any u,v,w € R3,
ux(vxw)+vx(wxu+wx((uxv)=0
7. For any u,v,w € R3,
ux (vxw)=(uw)yv-—(uv)w

Next we define a product which involves three vectors.

Definition 1.3.14 (Scalar triple product). Let u = (uy, us, u3), v = (v1, v2,v3), W =
(w1, wo, ws3) € R3. The scalar triple product of u,v,w is defined by

Uy U2 U3
(,vxw)=1| v vy 3
wp W2 wWs

The value |(u, v xw)| is equal to the volume of the parallelepiped spanned
by u,v,w. The sign of (u,v x w) depends on the orientation of u,v,w. It
is positive if u, v,w are in right hand orientation and otherwise negative.

Proposition 1.3.15 (Properties of scalar triple product). Scalar triple prod-
uct has the following properties.

1. Multi-linear
2. Anti-symmetric

3. (L,jxk)=1
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Proposition 1.3.16 (Cyclic property of scalar triple product). Letu,v,w €
R3 be three vectors. We have

(u,vxw)=(v,wxu)=(w,uxv)
The following three identities are useful in studying curvature of surfaces.
Proposition 1.3.17.
1. For any u;, vy, us, vy € R3,

(uj,up) (uy,va) |
‘ (vi,ug) (vi,va) | (ur X vi,uz X va)

2. For any u,v € R?,

3
3. For any Xii, Xi12,X21,X92, U1,V c R ,

(x11,u X V) (X1, 1 X V)
(X21,u X V) (Xgo,u X V)
<X117X22> - <X12,X21> <X11, u) <X117V>
= <X227 11> <11, 11> <11, V>
(X92,V) (v,u) (v,v)
0 (x12,u)  (X12,V)
- <X217 u> <11, u> <11, V>
<X217 V> <V7 u> <V’ V>

We turn our discussion to bases for vector subspaces of R™.

Definition 1.3.18 (Vector subspace). We say that a subset V. C R™ is a
vector subspace of R™ if V' contains the zero vector 0 and for anyu,v € V,

a, 8 € R, we have
au+ fv e V.

In other words, V' C R™ is a vector subspace if V' contains the zero
vector 0 and V' is closed under addition and scalar multiplication. The set
{0} contains only the zero vector is a subset of R™ which is called the trivial
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subspace. The whole set R™ is also a subset of R™. A vector subspace of R3
is either the trivial subspace {0}, a line passing through 0, a plane containing
0 or the whole R3.

Now we introduce the notions of linear independency and spanning set.

Definition 1.3.19 (Linearly independent vectors and spanning set). Let
V. C R™ be a vector subspace and E = {vy,va,...,vi} C V be a set of
vectors in V.

1. We say that E is linearly independent if
civi+cve+ -+ cavie =0
mmplies ¢ = co = -+ =¢, = 0.

2. We say that E spans V if for anyv € V', there exists scalars aq, as,. . . ,a €
R such that
V =Q1V] + QaVy + - + Qi V.

A set E of vectors in V' is linearly independent if the zero vector 0 can
not be written as a linearly combination of vectors in F in a nontrivial way,

meaning that not all coefficients are zero. We say that vi,vs, ..., vy are
linearly dependent if they are not linearly independent. In other words,
V1,Va, ...,V are linearly dependent if there exists scalars ¢, cs, ..., cx not

all zero such that
c1vi+covao+ -+ v = 0.

Proposition 1.3.20. Let V' C R™ be a vector subspace and E = {v1,va,..., vy} C
V' be a set of vectors in V. Then E is linearly dependent if and only if there
exists v; € E which can be written as a linear combination of other vectors

m E, that is,

Vi =1Vl + o+ Q1 Viel + Qi Vigr 00+ Qg Vi
for some aq, ..., q;_1, Q1. .., 0 € R.

Proof. Suppose FE is linearly dependent. Then there exists ¢y, ..., ¢, not all
zero, such that
v+ covo + -+ v = 0.
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Let 1 <i < k be such that ¢; # 0. Then

G Ci—1 Cit+1
Vi=—"Vi— " — Vi1 —
C; &) G

is a linear combination of other vectors in E.
Suppose there exists v; € E such that

VZ»+1—...

Vi =0qVy+ -+ Qo Vien + Qg Vi 0+ Qg Vg

for some aq, ..., q; 1, Q;11,...,05 € R. Then

arvi+ -+ Vi — Vit Qi Vi + - o v =0

23

and the coefficient of v; is —1 which is nonzero. Therefore E is linearly

dependent.

]

The above proposition implies in particular that a set E of vectors in V' is
linearly dependent if there exists distinct vectors u, v € E such that v = au

for some a € R. Furthermore if 0 € F/, then E is linearly dependent.

Proposition 1.3.21. Let V C R™ be a vector subspace and EE C 'V be a set

of vectors in V. Suppose the vectors in E are

1. mutually orthogonal, that is, (u,v) =0 for any distinct u,v € E, and

2. nonzero, that is, v # 0 for any v € E.
Then E is linearly independent.

Proof. Let E = {vy,...,vp} C V. Suppose
C1V1 + CoVg + -+ - + CpVE = 0.
For any 1 <17 < k, we have

c1(Vi, Vi) + Vi, Vo) + - - + e (Vi, Vi)

Ci<Vi7 Vi> =

which implies ¢; = 0 since v; # 0. Thus ¢; = 0 for any 1 < i < k. Therefore

FE is linearly independent.

O
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Proposition 1.3.22. Let V C R™ be a vector subspace and
E={v,ve,...,vx} CV
be a set of vectors in V.
1. Suppose E is linearly independent. Then

(i) any subset of E is linearly independent.
(i) if E does not span V', then there exists Vi1 € V' such that

F=EU{vi}={vi,..., Vi, Vis1}
18 linearly independent.
2. Suppose E spans V. Then

(i) any set of vectors which contains E spans V.

(ii) if E is not linearly independent, then there exists v; € E such that
D=FE\{vi} ={vi,.. ., Vi1, Vit1,---, Vi }
spans V.
Proof. 1. Suppose E is linearly independent.

(i) Let D € E. We may assume D = {vy,...,v,.} where r < k.

Suppose
cavi+---+c¢v, =0.
Then
avi+--+ev,+0vey + -+ 0vp = 0.
Since F is linearly independent, we have ¢y = ¢ = --- = ¢, = 0.

Therefore D is linearly independent.
(ii) If E' does not span V, then there exists vii1 € V which is not a
linear combination of vectors in £. Suppose

c1vy+ -t v + Cri1VEgi1 = 0.

Then c¢gyq = 0 for otherwise

C1 Ck
Vi1 = ———Vp — - — —Vg
Ck+1 Ck+1
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is a linear combination of vectors in £ which contradicts the choice
of vigiq. Thus
61V1—|—"‘+CkaIO

which implies ¢; = -+ = ¢ = 0. Therefore F' = E U {vgy1} is
linearly independent.

2. Suppose E spans V.

(i) Let F' C V be a set of vectors with £ C F. For any v € V, v is
a linear combination of vectors in F because E C F and E spans
V. Thus F spans V.

(ii) If £ is not linearly independent, then by Proposition [1.3.20 there
exists v; € E such

Vi =0V + o+ Qo Viel + Qi Vigr + 00 Vg

Now for any v € V| since F spans V, there exists 51,...,0: € R
such that

v o= Bivit A Bivit e+ Brvy
= bivit+ -+ Bicavia
+Bi(aavy + -+ @i Vi + Qi Vigr o+ apvy)
+Bit1Vitr + -+ Brvi
= (Bi+Biar)vi+ -+ (B + i) Vi
+(Bit1 + Bictiv1)Vigr + -+ (Br + Biok) v

Therefore any vectors in V' can be expressed as a linear combina-
tion of vectors in D = F\{v;} which means D spans V.

]

Definition 1.3.23 (Basis). Let V' C R™ be a vector subspace and E =

{v1,va,...,vp,} CV be a set of vectors in V. We say that E constitutes a
basis for V if

1. E s linearly independent, and

2. E spans V.
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Example 1.3.24 (Standard basis). The set B = {ej,es,...,e,} where

e, = (1,0,0,...,0,0)
es = (0,1,0,...,0,0)

e, = (0,0,0,...,0,1)
constitutes a basis for R™ and is called the standard basis.

Theorem 1.3.25. Let V' C R™ be a vector subspace and E = {vq,va,...,v,} C
V' be a set of vectors in V. Then the following conditions are equivalent.

1. E constitutes a basis for V.

2. For any v € V, there exists unique o, s, - -+ , o, € R such that

V=QV] +QaVy + -+ Q,V,.

Proof. Suppose E constitutes a basis for V. For any v € V, since E spans
V', there exists aq, ..., a, such that

V=1V + QaVa + - + V.

To prove that such coefficients aq, . . ., a,, are unique, suppose 31, ..., 05, € R
are scalars such that

v =[1vi+ Bava + -+ Buva.
By considering the difference of the two equalities, we have
(1 = Bi)vi+ (ag — Ba)va + - + (a, — Bp) v = 0.

Since F is linearly independent, we must have

ap—Bi=ay—Pfr=-=a,— B, =0
which means the expression of v as a linear combination of vy,...,v, is
unique.
Suppose for any v € V', there exists unique aq,--- ,a, € R such that

V=a1V] +Qave + -+ a,Vy,.
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It is obvious that E spans V. To prove that E is linearly independent,
suppose
cvy+cve+ -4+ c,v,, = 0.

Since

0=0vy+0vy+ -+ 0v,,
we have ¢; = ¢o = --- = ¢, = 0 by uniqueness of expression of 0 as a linearly
combination of . Thus F is linearly independent. Therefore B constitutes
a basis for V. |

The following proposition says that the number of vectors in any set of
linearly independent vectors in a vector subspaces V' is always less than or
equal to the number of vectors in a spanning set for V.

Proposition 1.3.26. Let V' C R™ be a vector subspace. Suppose E =
{uj,ug,...,u,} C V spans V and F = {vy,va,...,vs} C V is linearly
independent. Then r > s.

Proof. Suppose E = {uy,...,u,.} spans V and F' = {vy,...,v,} be any set
of s vectors in V. Suppose r < s. It suffices to prove that F must be linearly
dependent. Since F spans V, any vector v; € S C V is a linear combination
of vectors in E' and we may write

Vj = aljul + a/2ju2 + -+ aTjuT

for some ay;,---,a,; € R. Collect the above equalities and write them in
matrix form as

aix aig - Aig

a21 Qg2 -+ Agg
(Vl V2 PR VS):(ul u2 PR u'I")

Ar1 Qpg - Qpg

By Proposition [1.1.11], there exists cq,...,cs € R, not all zero, such that

aix a2 - Aig &1 0
a21 Ag2 -+ Agg C2 0
Ar1y Apy - Qpg Cg O
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Then
C1V1 + GV + -+ + GV
C1
C2
= ( Vl V2 .. VS )
Cs
air Qi -0 Qs C1
Q21 Q2 -+ Q2 Co
= (w w - w)
Ar1 Qprg - Opg Cs
0
0
0
=0
and at least one of ¢y, ..., ¢, is nonzero. Therefore F' is linearly dependent
and the proof of the proposition is complete. n

The above proposition has an important consequence that any two bases
for V' contain the same number of vectors.

Theorem 1.3.27. Let V C R™ be a vector subspace. Suppose E = {uj,uy,...,u,} C
V and F ={vy,va,...,vs} CV are two bases for V.. Then r = s.

Proof. Since E spans V' and F is linearly independent, we have r > s by
Proposition [1.3.26] Since F' spans V' and F is linearly independent, we have
s > r again by Proposition [1.3.26] Therefore we have r = s. O]

This allows us to define the dimension of V.

Definition 1.3.28 (Dimension). Let V' be a vector subspace of R™. The

dimension of V' is the number of vectors in a basis for V and is denoted by
dim(V).

Example 1.3.29.
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1. The trivial subspace V.= {0} has dimension dim(V') = 0. The empty
set E = (), which contains zero vector, is a basis for V .= {0}.

2. The subspace V- =R™ has dimension dim(V') = m. The standard basis,
which contains n vectors, is a basis for V.=R"™,

In particular, a basis for R”™ must contain exactly m vectors.

Theorem 1.3.30. Let V. C R™ be a vector subspace and F C 'V be a set of
vectors in V. Then

1. F is linearly independent if and only if F' is contained in a basis for V.
2. F spans V' if and only if F' contains a basis for V.
Proof. Suppose dim (V') = n.

1. If F C E is contained in a basis E for V, then F'is linearly independent
since F is linearly independent (Proposition [1.3.22)).

Conversely suppose F' is linearly independent. If F' spans V, then F' is
a basis for V' and we are done. If F' does not span V', then there exists
v ¢ F such that F; = F U {v} is linearly independent (Proposition
1.3.22). Repeat this process and get subsets F' C F} C F» C ---. Since
a set of linearly independent vectors in V' contains at most dim(V') = n
vectors (Proposition , the process stops in finitely many steps
and we obtain a basis for V.

2. If F contains a basis E for V', then F' spans V since E spans V' (Propo-
sition |1.3.22)).

Suppose F spans V. Let E C F be a subset of F' which is linearly
independent. If E spans V', then E is a basis contained in F' and we
are done. If F/ does not span V', then there exists v € F' which is not
a linear combination of vectors in E. Then E; = E'U {v} is linearly
independent. Repeat this process and get subsets £ C Fy C Ey C
--+. Since a set of linearly independent vectors in V' contains at most
dim(V) = n vectors (Proposition [1.3.26)), the process stops in finitely

many steps and we obtain a basis for V.

]
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If the dimension of a vector subspace is known, it is easier to determine
whether a set of vectors constitutes a basis.

Theorem 1.3.31. Let V' C R™ be a vector subspace with dimension dim (V') =
n and F = {vy,va,...,v,} CV be a set of n vectors in V. Then the follow-
ing conditions are equivalent.

1. F' constitutes a basis for V.
2. F is linearly independent.
3. F spans V.

Proof. 1t suffices to prove that F' spans V if and only if F' is linearly inde-
pendent.

Suppose F' spans V. Then there exists a basis E/, which contains n vectors
since dim(V) = n, such that £ C F (Theorem [1.3.30). Hence we must have
I = F since F' contains n vectors by assumption. Therefore F' constitutes a
basis for V.

Suppose F' is linearly independent. Then there exists a basis E, which
contains n vectors since dim(V) = n, such that F C E (Theorem [1.3.30).
Hence we must have F' = F since F' contains n vectors by assumption.
Therefore F' constitutes a basis for V. [

Proposition 1.3.32. Let u,v,w € R? be three vectors in R3. The following
conditions are equivalent.

1. u,v,w are linearly independent.
2. (u,v xw)#0

We say that an n xn matrix A is nonsingular if it satisfies the equivalent
conditions in the following theorem. We say that A is singular if it is not
nonsingular, that is, det(A) = 0.

Theorem 1.3.33. The following conditions for nxn matriz A are equivalent.
1. det(A) #0
2. A is invertible, that is, the inverse A~ of A exists.

3. For any n column vector b, the equation Ax = b has a unique solution
for x.
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4. The homogeneous equation Ax = 0 has no nontrivial solution, that is,
solution for which x # 0.

5. The column vectors of A constitute a basis for R™.

Proof. (1)=>(2). Proposition [L.2.11]

(2)=(3). Suppose A is invertible. Then Ax = b if and only if x = A™'b.
Therefore Ax = b has a unique solution x = A~'b for any b € R™.
(3)=(4). Obvious by taking b = 0.

(4)=-(5). Let aj, ay,...,a, be the column vectors of A. If the homogeneous
equation Ax = 0 has only trivial solution x = 0, then

cia +cag+---+ca, =0

only when ¢; = ¢ = -+ = ¢, = 0. Thus aj,ay,...,a, are linearly inde-
pendent which implies aj, as, ..., a, constitute a basis for R™ by Theorem
331

(5)=-(1). Theorem [1.3.31 O

In the last part of this section, we study vector valued function. Suppose
v(t) for t € (a,b) is a vector valued function, that means, v is a function
from open interval (a,b) to R®. We may write v(t) = (x(t),y(t), 2(t)) where
x(t),y(t), z(t) are ordinary real valued functions. Thus giving a vector valued
function is the same as giving three real valued function. Similar to ordinary
function, we say that v(t) is differentiable if the limit

dv . v(t+At)—v(t)
a A At

exists and the limit is called the derivative of v(¢) and is denoted by Cfi—;’ or

v/(t). It is not difficult to see that v(t) is differentiable if and only if all three
functions x(t),y(t), 2(t)) are differentiable. We have the following rules for
derivative of vector valued functions which can be proved by the properties
of derivatives of ordinary functions.

Proposition 1.3.34 (Rules for derivative of vector valued functions). Let
u(t),v(t), w(t) be differentiable vector valued functions and a(t) be real valued
function.

d du dv
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2. %(av):afl—‘tf—l—cfl—?

3. %(u,v) <CZZ_;1’V>+<U’CCZZ_Z>

4. %(uxv)—d—xv%—uxz—z

5. %(u,VXW>—<Z—?,VXW>+<U,2—Z><W>+<uaV><dd—v:>

The following lemma will be used from time to time in these notes and
therefore we include the proof here.

Lemma 1.3.35. Let u(t) and v(t) be two vector valued functions.

1. If {u(t),v(t)) is constant, then for any t, we have
(u'(t), v(t)) = —(u(t), v'(1)).
2. If ||v(t)|| is constant, then for any t, we have
(V'(t),v(t)) = 0.
Proof. Differentiate (u(t),v(t)) = C, where C'is constant, with respect to ¢,

we have

(u'(£), v (1)) + (u(t), v'(t)) = 0
and the first statement follows readily. The second statement is obtained by
taking u(t) = v(t). O
1.4 Orthogonal matrices and rigid transformations

An important interpretation of matrices is that they associate naturally with
linear transformation.

Definition 1.4.1 (Linear transformation). A function L : R" — R™ is called
a linear transformation if for any u,v € R"” and o, 8 € R, then

L(au + pv) = aL(u) + SL(V)
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Example 1.4.2 (Linear transformations associated with matrices). Let A
be an m x n matriz. Define a function L, : R™ — R™ by

La(v)=Av

for v = (vi,va,...,v,)T. Here we use the column vector notation where v
is an n column vector and Av is an m column vector. Then L, is a linear
transformation which is called the linear transformation associated with A.

Conversely for any linear transformation L : R” — R™ if we take
A=[L(e1),...,L(e,)]

where eq,...,e, are n column vectors in the standard basis for R", then
L4 = L where L4 is the linear transformation associated with A. Thus we
have

Proposition 1.4.3 (Matrix representation of linear transformation). Let
L :R"™ — R™ be a linear transformation. Then there is an m X n matriz A
such that Ly = L where L4 is the linearly transformation associated with A.
The matriz A is called the matrix representation of L.

Therefore there is a one-to-one correspondence between m x n matrices
and linear transformations from R™ to R™. The following proposition says
that the matrix multiplication associates with composition of linear trans-
formations. This is one of the major reasons why matrix multiplication is
defined in such a way.

Proposition 1.4.4. Let A and an k x m matriz and B be an m X n ma-
triz. Let Lo and Lg be the linear transformation associated with A and B
respectively. Then the matrixz representing Ly o Ly is AB. In other words,

LAB = LAOLB'

Next we consider an important class of 3 x 3 matrices which correspond
to rotation in R3,

Definition 1.4.5 (Orthogonal and special orthogonal matrix). Let @ be an
n X n matri.

1. We say that Q) is an orthogonal matrix if Q! = QT where QT is
the transpose of Q).
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2. We say that Q) is a special orthogonal matrix if Q) is an orthogonal
matriz and det(Q) = 1.

Definition 1.4.6 (Orthonormal basis). Let V' C R™ be a vector subspace.
We say that a set E = {v1,Va,...,v,} of vectors constitutes an orthonor-
mal basis for V if they satisfy the following conditions.

1. E constitutes a basis for V.
2. E is mutually orthogonal, that is, (v;,v;) = 0 whenever i # j.
3. E consists of unit vectors, that is, ||v;|]| =1 fori=1,2,...,n.

Proposition 1.4.7. The following conditions for an n X n matriz ) are
equivalent.

1. @Q s an orthogonal matriz.
2. The column vectors of () constitute an orthonormal basis for R™.

3. For any u,v € R",
(Qu,Qv) = (u,v)

4. For any v € R",
Qv = [Iv]

Note that if @ is an orthogonal matrix, then det(Q) = £1. If det(Q) = 1,
that is, @) is a special orthogonal matrix, then () corresponds to a rotation
in R™. If det(Q) = —1, then @ corresponds to a reflection composites with a
rotation in R"™.

Proposition 1.4.8. Suppose Q) is a special 3 X 3 orthogonal matrix.

1. For any u,v € R3, we have
Quxv)=CQux Qv.
2. For any u,v,w € R3, we have

(Qu, Qv x Qw) = (u, v x w).
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Proof. First we prove (2). For any u, v € R3, we have

(Qu, Qv x Qw) = det([Qu,Qv,Qw])
= det(Q[u,v,w])
det(Q) det([u, v, w))
= det([u,v,w])

= (u,v xXw).

N N N/

Now we use (2) to prove (1). Let u,v € R3. For any w € R3, we have

(w,Quxv)) = (QQ7'w,Q(uxv))
= (Q 'w,u x v) (Proposition
= (QQ7'w,Qu x Qv) (by (2))
= (w,Qu x Qv)
Therefore Q(u x v) = Qu x Qv by Proposition [1.3.5] O

Definition 1.4.9 (Rigid transformation). A rigid transformation of R”
is a function T : R™ — R™ of the form

T(v)=Qv+a

for some n x n orthogonal matriz () and constant vector a € R". If fur-
thermore det(Q) = 1, that is, Q is a special orthogonal matriz, we say that
T is orientation preserving. If det(Q) = —1, we say that T is orientation
TeVeTsing.

Proposition 1.4.10. The following conditions for a function T : R® — R3
are equivalent.

1. T is a rigid transformation.

2. T preserves distance between two points, that is, for any u,v € R3,

I7(w) = T)|| = |lu = vl

3. T is a composition of a rotation, and/or a translation, and/or a reflec-
tion.
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1.5 Eigenvalues, eigenvectors and diagonalization
Eigenvalues and eigenvectors are important in many aspects in linear algebra.

Definition 1.5.1 (Eigenvalues and eigenvectors). Let A be an n X n matriz.
If X is a complex numberf| and € is a non-zerd| complex vector such that

A = XE,

then we say that X is an eigenvalue of A and & is an eigenvector of A
associated with \.

To find eigenvalues of a matrix, we need to solve the characteristic equa-
tion.

Definition 1.5.2 (Characteristic polynomial and characteristic equation).
Let A be an n x n matriz. The characteristic polynomial of A is the
degree n polynomial det(xl — A) in =, where I is the identity matriz. The
characteristic equation of A is the degree n polynomial equation

det(zl — A) = 0.

Note that the equality AE = A\ is equivalent to (Al — A)€ = 0. Now
A is an eigenvalue of A if and only if there exists nonzero vector £ such
that (Al — A)€ = 0 which is equivalent to det(Al — A) = 0. To find an
eigenvector associated with the eigenvalue A, one needs to find & # 0 such
that (A — A)§ = 0.

Proposition 1.5.3. Let A be an n X n matriz.

1. A complex number X is an eigenvalue of A if and only if \ is a root to
the characteristic equation det(xl — A) = 0.

2. Let X\ be an eigenvalue of A. Then & is an eigenvector of A associated
with X if and only if &€ # 0 and (A — A)€ = 0.

Note that a polynomial equation of degree n has at least one complex
root and at most n distinct root. We have

3The set of complex numbers is C = {a + bi : a,b € R} where i = —1. Note that a
real number is also a complex number. Even when the matrix is real, we would consider
complex eigenvalues and eigenvectors.

4Eigenvalue of a matrix may be 0 but eigenvector is by definition a non-zero vector.
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Proposition 1.5.4. An n X n matrix has at least one eigenvalue and has at
most n distinct eigenvalues.

Next we discuss diagonalization of matrices.

Definition 1.5.5. Let A and B be n x n matrices. We say that A and B
are similar if there exists invertible matriz P such that

P 'AP=B.
Proposition 1.5.6. Similarity of matrices satisfies the following properties.
1. (Reflexive) For any A, we have A is similar to A.
2. (Symmetric) If A is similar to B, then B is similar to A.

3. (Transitive) If A is similar to B and B is similar to C, then A is
similar to C.

In mathematics, we say that a relation is an equivalence relation if it
is reflexive, symmetric and transitive. Thus similarity of matrices defines an
equivalence relations on the set of n x n matrices.

Proposition 1.5.7. Suppose A and B are similar n X n matrices. Then
1. A and B have the same characteristic polynomial.
2. X\ is an eigenvalue of A if and only if it is an eigenvalue of B.
3. det(A) = det(B)
4. tr(A) = tr(B)

Proof. Suppose A and B are similar. Then there exists invertible matrix P
such that B = P~1AP.

1. Since
det(xI — B) = det(z] — P"*AP) = det(P~ (2 — A)P) = det(xl — A),
the characteristic polynomials of A and B are the same.

2. The statement follows easily by the fact that the eigenvalues of a ma-
trix is exactly the roots of the characteristic polynomial of the matrix

(Proposition |1.5.3]).
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3. det(B) = det(P7'AP) = det(P) ! det(A) det(P) = det(A)
4.
tr(B) = tr(P'AP)
= tr(APP™") (Proposition [I.2.13)
= tr(A)
[l

Definition 1.5.8 (Diagonalization). An n x n matriz A is diagonalizable
if there exists invertible matrix P such that

P'AP=D

1s a diagonal matrix and we say that P diagonalizes A. In other words, a
matrix A is diagonalizable if and only if A is similar to a diagonal matrix.

A matrix P diagonalizes A if and only if the column vectors of P are
linearly independent eigenvectors of A.

Proposition 1.5.9. let A be an n x n matriz and P = (&1, &2, ..., &,] where
£1,&,...,&, are column vectors of P. Then the following statements are
equivalent.

1. P is invertible and P~YAP = D where

A
1)\2 0

D= .
0 A
2. The vectors &1,&s, ..., &, are linearly independent eigenvectors of A
associated with Ay, Aa, ..., N\, respectively.
Proof. Observe that
AP =PD

& [A&, AL, ..., AL = (M€, Ao, NE
& A =NE fori=1,2,....n

Therefore P~'AP = D if and only if &, &, ..., &, are linearly independent
eigenvectors of A associated with i, Ao, ..., A, respectively. O
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To diagonalize a matrix A, we need to find all eigenvalues of A and as
many linearly independent eigenvectors as possible for each eigenvalue. For
each eigenvalue A\, the number of linearly independent eigenvectors associ-
ated with A cannot be larger than the multiplicity of A\ as a root of the
characteristic equation.

Definition 1.5.10 (Algebraic and geometric multiplicity of eigenvalue). Let
A be an n x n matrix and X be an eigenvalue of A.

1. The algebraic multiplicity m,(\) of A is the multiplicity of \ as a
root of the polynomial equation det(xl — A) = 0, that means the largest
positive integer k such that det(zI — A) is divisible by (x — \)F.

2. The geometric multiplicity mg(\) of A is mazimum number of lin-
early independent eigenvectors associated with \.

The algebraic and geometric multiplicity of an eigenvalue satisfies the
following inequality.

Proposition 1.5.11. Let A be an n X n matrix and XA be an eigenvalue
of A. Let my(X\) be the algebraic multiplicity and my(X) be the geometric
multiplicity of \. Then we have

1 <my(A) <me(N) <n.

Proof. There is at least one eigenvector & associated with A and eigenvector
is by definition nonzero. Thus we have m,(A) > 1. On the other hand,
the characteristic equation is of degree n and thus we have my(\) < n.
Suppose m,(A) = k. Then there exists k linearly independent eigenvectors
£1,&,...,& € C" of A associated with A\. We are going to prove that the
algebraic multiplicity of A\ satisfies m,(A) > k. Now there exists (Theorem
1.3.30) n — k vectors vgi1,...,v, € C" such that &,..., &, Viit,. -, Vn
constitute a basis for C". Using these vectors as column vectors, the n x n
matrix

P = [El,...,gk’VkJrl,...,Vn]
is nonsingular (Theorem [1.3.33)). Consider the matrix B = P~'AP which

must be of the form
B_ AN C
- 0 D
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where [ is the k x k identity matrix, 0 is the (n — k) X k zero matrix, C' is
a k x (n — k) matrix and D is an (n — k) X (n — k) matrix. Note that since
A and B are similar, the characteristic equation of A and B are the same

(Proposition |[1.5.7]). Observe that

det(af — B) = | @ _OM 7O =@~ Ve det(al - D).

We see that the algebraic multiplicity of A as root of the characteristic equa-
tion of B is as least k£ and therefore the algebraic multiplicity of A\ as root of
the characteristic equation of A is as least k. O

Note that by fundamental theorem of algebra], the sum of algebraic
multiplicities of all eigenvalues of an n x n matrix is n.

Theorem 1.5.12. Let A be an n X n matriz and A1, \a, ..., A\, be distinct
eigenvalues of A. Suppose &1,&s,...,& are eigenvectors associated with
A, Ag, ..y A, respectively. Then &1, &, . .., &k are linearly independent. More
generally, suppose

E:{5117-~'7€1m17€21;---7£2m27-~7€k17'--7€k:mk}

are vectors such that for each 1 =1,2,...,k,

Ei = {€i17 cee 7£zmz}

is a set of linearly independent eigenvectors associated with X\;. Then the
vectors in E are linearly independent.

Proof. We prove the first part of the statement by induction on k. When
k = 1, the vector £ is linearly independent since eigenvector is nonzero by
definition. Assume that any k— 1 eigenvectors associated with distinct eigen-
vectors are linearly independent. Let &;,...,&, be eigenvectors associated
with distinct eigenvalues Aq, ..., A\x. Suppose

11 +cbo+ -+ € = 0.
Multiplying A — A\l from the left to both sides, we have
Cl(A — )\kI)€1 —f— s —|— Ck_l(A — )\k]>€k—1 + Ck(A — )\kl)sk = O
(M — )&+ 1M1 — M) = 0.

50ne way of stating the fundamental theorem of algebra is that the sum of the multi-
plicities of all roots of a polynomial equation of degree n is n.
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By induction hypothesis, the vectors &;,...,&,_1 are linearly independent
which implies ¢;(A\;—A;) = 0foranyi =1,2,... k—1. Now \;—\; # 0 fori #

k since A1, ..., Ay are distinct. Hence we have ¢; =0fori=1,2,..., k—1. It
follows that ¢ & = 0 which implies ¢, = 0 since & # 0 being an eigenvector.
Therefore &1, ..., & are linearly independent.

For the more general statement, suppose

m+mn+---+n=0
where
i = ci&in + -+ Cim,&ims

for i« = 1,2,...,k. Observe that An; = A\;n;, and by the first part of the
proof, we must have

m=mn=--=n=0.
Note that &;;,..., &, are linearly independent which implies ¢;; = c;o =
-+« = Cjm, = 0. Therefore the vectors in E are linearly independent. ]

Theorem 1.5.13. Let A be an n x n matriz. Then the following statements
are equivalent.

1. A is diagonalizable.
2. There exists n linearly independent eigenvectors of A.

3. For each eigenvalue X of A, we have my(\) = mg(\) where mgy(X)
and my(X\) are the geometric multiplicity and algebraic multiplicity of
A respectively.

Proof. The first two statements are equivalent by Proposition [I.5.9] We
are going to prove that (2) and (3) are equivalent. Let Aj,..., Ay be all
eigenvalues of A. Suppose there exists n linearly independent eigenvectors
of A for which m; of them are associated with \; for 1 < ¢ < k. Then
m; < my(A;) by definition of m, and thus

n = mp+me+---+my
< mg(An) +mg(Ag) + -+ +my(Ar)
< me(A) +me(A2) + - +mg(Ag) (Proposition [1.5.11])

n (Fundamental theorem of algebra).
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Therefore my(\;) = mg,(\;) for any i =1,2,... k.

Suppose for each ¢ = 1,2,...,k, we have my,(\;) = m,(\;) and let
&€, ..., &m,, where m; = my(\;) = m,()\;) be linearly independent eigen-
vectors associated with );. Then by Theorem [1.5.12] the vectors

Ellw'-7€1m17€217‘--7£2m2)~~7£k17-~)£k‘mk

are linearly independent. By fundamental theorem of algebra, we have
my+ -4 mp = ma(A) 4 - + ma(A) = n.

Therefore we have n linearly independent eigenvectors which implies A is
diagonalizable. O

In particular, we have

Proposition 1.5.14. Let A be an n x n matriz. Suppose A has n distinct
eigenvalues. Then A is diagonalizable.

Note that the converse of the above theorem is false. That is, a diagonal-
izable n X n matrix may have less than n distinct eigenvalues.

Theorem 1.5.15 (Cayley-Hamilton theorem). Let A be an nxn matriz and
p(x) = det(xzl — A) be its characteristic polynomial. Then p(A) = 0.

Proof. Let B =2l — A and
p(z) =det(B) =a" +c, 12" '+ +ar+oo

be the characteristic polynomial of A. Consider B = 2z — A as an n X n
matrix whose entries are polynomial in z. Write the adjugate adj(B) of B
as a polynomial of degree n — 1 in x with matrix coefficients

adJ(B) = Bn_l.fEn_l + -+ le + BO
where the coefficients B; are n x n constant matrices. On one hand, we have

det(B)YIT = (2" +cp 2™ '+ +coxtc)l
Ig" 4 cp Iz o el + ol

One the other hand, we have

Ba’d.] (B) = (LU[ - A) (anlxnil + ct + Blﬂj + Bo)
= B, 12"+ (Bpog— AB,_1)a" ' +.-- + (By — AB))x — AB,.
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Comparing the coefficients of
det(B)I = Badj(B),
we get

I = B,
Cn—lj - Bn—2_ABn—1

Cll = BO—ABl
C()[ = —ABO

Now we multiply the first equation by A", the second equation by A"~!, and
so on, and the last one by /. Then adding up the resulting equations, we
obtain

p(A) A" ey A" b e Aol
- Aan,1 -+ (Anian,Q - Aan,1> + 4 (ABO - AzBl) - ABQ

= 0.

1.6 Self-adjoint operator

Self-adjoint operators are linear operators which satisfy (L(u), v) = (u, L(v)).
They form an important class of linear operators. To understand them, we
need to extend our studies in the previous sections to vector space over C,
complex inner product space and linear operators on these spaces.

Definition 1.6.1 (Inner product). The inner product of two vectors w,z €
C" is defined by

(W,2Z) = wiZ] + weZs + -+ + wpZ,

for w = (wy,wa, ..., wy,), 2= (21,20,...,2,) € C".
Inner product has the following properties.

Proposition 1.6.2 (Properties of inner product). Let u,v,w € C" and
a,B € C. Then
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1. (Linear in first argument):
(au + v, w) = afu,w) + 5(v, w)

2. (Congugate symmetric):

(v,u) = (u,v)

3. (Positive definite):
(v.v) >0

with equality holds if and only if v = 0.

Note that by linearity in first argument and conjugate symmetry, inner
product is conjugate linear in the second argument, that is,

(w,au + Bv) = a(w,u) + 3(w,v).

A subset V' C C™ is a complex vector subspace if 0 € V and for any u,v € V,
a, B € C, we have

au+ pv e V.

A linear operator on a complex vector subspace V' C C™ is a function L :
V' — V such that for any u,v € V, o, 5 € C, we have

L(au+ Bv) = aL(u) + BL(v).

A linear operator on a n dimensional vector subspace V' C C™ can be repre-
sented by a n X n matrix with respect to a basis for V. When we talk about
matrix representation, we need to specify the order of vectors in the basis.

We called a basis £ = (vy,...,Vv,) whose vectors are ordered an ordered
basis.

Definition 1.6.3 (Matrix representation of linear operator). Let V. C C™
be a vector subspace with dimension dim(V) =n and L : V — V be a linear

operator on V. Let E = (uy,...,u,) be an ordered basis for V. Then for
each 7 =1,2,...,n, we may write

L(Uj) = aljul + (lgjllg + -+ anjun
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for some complex numbers ai;, as;j, ..., an; € C. We say that the n xn matriz
11 A2 - Qin
Q21 Qg2 ~--- Q2
Ap = ay] =
An1 Qp2 " Gpp

is a matrix representation of L with respect to the ordered basis E.

One may write the equalities
L(u;) = ajjuy + agjug + - - - + ayu,
for y=1,2,...,n, as
L(uy,...,u,) = (uy,...,u,)Ag.

The matrix representation Ar has the following interpretation. For any
v € V, if we write

V = o1u) + el + - - - + Uy,

then
L(v) = fiuy + foug + -+ - + Bru,
where
o aq
: = Ap :
Bn U

We may choose different bases for V' and obtain different matrix represen-
tations of L. However, two matrix representations of a linear operator are
always similar.

Proposition 1.6.4. Let V. C C™ be a vector subspace with dim(V) = n
and L : 'V — V be a linear operator on V. Let E = (uy,...,u,) and
F = (vq,...,v,) be two ordered basis for V. Let Ag and Ap be the matrix
representation of L with respect to bases E and F' respectively. Then Ag and
Ar are similar matrices.
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Proof. We need to find an invertible matrix P such that Ap = P~'ApP. We

may write
L(uy,...,u,) = (uy,...,u,)Ag
and
L(vi,...,vp) = (vi,...,Vy)Ap.
For each j =1,2,...,n, write
Vj = P1ju1 + P2jus + -+ Prjly,
where pyj,...,pn; € C which can be written as

(Vi,...,vy) = (ug,...,u,)P
where P = [p;;]. Note also that
(Vi, .., v) P = (ug,...,uy,).
Thus we have

L(vy,...,vy,) = L((uy,...,u,)P)
= L(uy,...,u,)P

(uy,...,u,)AgP

(Vi,..., V)P T ARP.

Vi,...

This means Ap = P~ ApP. Therefore Ap and Ap are similar.

]

Proposition 1.6.5. Let V' C C™ be a linear operator and L : V — V be
a linear operator on V. Let E and F be two ordered bases for V. Suppose
Ag and Ap are the matrixz representations of L with respect to E and F

respectively. Then the following statements holds.
1. Ag and Ap have the same characteristic polynomial.
2. Ag and Ap have the same set of eigenvalues.
3. det(Ag) = det(Ap)
4. tr(Ag) = tr(Ar)

The above proposition allows us to define the determinant and trace of a

linear operator.
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Definition 1.6.6 (Determinant and trace of linear operator). Let V C C™
be a vector subspace with dim(V) =n and L : V — V be a linear operator
on V. The determinant and trace of L is the determinant and trace of a
matriz representation of L respectively.

Definition 1.6.7 (Eigenvalues and eigenvectors of linear operators). Let
V C C™ be a vector subspace and L -V — V' be a linear operator. Suppose
A€ C and £ € V is a nonzero vector such that

L(§) = A¢.

Then we say that X\ is an eigenvalue of L and & is an eigenvector of L
associated with \.

It is not difficult to see that X is an eigenvalue of L if and only if A is an
eigenvalue of the matrix representation Ag. In fact

£ =au; +aug + - - + auy,

is an eigenvector of L associated with A if and only if (aq,...,q,) € C" is
an eigenvector of Ap associated with .

Definition 1.6.8 (Self-adjoint operator). Let V' C C™ be a complex vector
subspace and L : 'V — V be a linear operator on V. We say that L s
self-adjoint if for any u,v € V, we have

(L(u),v) = (u, L(v)).

Let’s study the matrix representation of a self-adjoint operator. For com-
plex matrix, it is more natural to consider conjugate transpose in stead trans-
pose.

Definition 1.6.9 (Conjugate transpose). Let A = [a;;] be an n x n complex
matriz. The conjugate transpose of A is defined by

A =A4"
In other words, the ij-th entry of the conjugate transpose A* of A is

[A*]i; = @i
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A linear operator is self-adjoint if and only if its matrix representation
with respect to an orthonormal basis is Hermitian.

Definition 1.6.10 (Hermitian and unitary matrix). Denote by A* = A" the
conjugate transpose of an n X n complex matrix A.

1. Ann x n matriz H is said to be Hermitian if H* = H.
2. Annxn matriz U is said to be unitary if U is invertible and U* = U~!.

Proposition 1.6.11. Let V' C C™ be a complex vector subspace and E be an
ordered orthonormal basis. Let L :' V — V be a linear operator on V. Then
L is self-adjoint if and only if the matriz representation Ag of L with respect
to E is Hermaitian.

Proof. Let E = (uy,...,u,) be an ordered orthonormal basis. Suppose the
matrix representation of L with respect to E is Ap = [a;;]. Now for i =
1,2,...,n,

L(uz) = a1;U1 + a9; U9 + e+ QpiUyp .

Since E is an orthonormal basis, we have

(L(u;),u;) = (au; + agiug + - - - + apilly, Uj) = aj
and similarly

(u;, L(uy)) = (ui, agju; + agjuy + -+ + apjuy) = agj.

Now if L is self-adjoint, we have aj; = @;; for any 1 < ¢, j < n which means
Ap is Hermitian.

Conversely if A is Hermitian, then a;; = @;; which implies (L(w;), u;) =
(u;, L(u;)) for any 1 < i,5 < n. Then it follows readily that L is self-
adjoint. []

Let A and & be eigenvalue and eigenvectors of a self-adjoint operator L.
Then the image under L of a vector orthogonal to & is orthogonal to &.

Theorem 1.6.12. Let V. C C™ be a vector subspace and L : 'V — V be
a self-adjoint operator. Let & be an eigenvector of L. Then for any vector

n € V with (§,m) =0, we have (£, L(n)) = 0.
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Proof. 1. Suppose (§,17) = 0. Then

(&, L(n)) = (L(§),n)

O

Definition 1.6.13 (Orthogonal complement). Let V- C C™ be a vector sub-
space and W C V' be a vector subspace of V. The orthogonal complement
of W in 'V s defined by

Wt ={wt eV :(w,wh) =0 for any w € W}

Proposition 1.6.14. Let V. C C™ be a vector subspace with det(V). Let
W C V be a vector subspace of V and W+ be the orthogonal complement of
W in V. Then

1. Wnwt = {0}
2. For any v € W, there exists unique decomposition

V:W%—WL

such that w € W and w+ € W+,
3. dim(W) + dim(W+) = dim(V)

Proof. 1. Suppose v e WNW+L. Then v € W and v € W+ which implies
(v,v) = 0. Thus we must have v = 0. Therefore W N W+ = {0}.

2. Suppose v € V. By extreme value theorem[] there exists w € W
such that ||[v — w| < |[v—z| for any z € W. Let wt = v — w.
Suppose there exist z € W such that (z, w') # 0. By replacing z by

6The extreme value theorem says that if f is a continuous function defined on a closed
and bounded set D and f is bounded from below, then f attains its minimum on D. That
means there exists z € D such that f(z) < f(z) for any z € D.
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its multiple, we may assume that (z, w') = @ > 0 and ||z|]| = 1. Note
that w + oz € W and

Iv—(w+az)||* = |w"—az|*
= [[w|* = {az,w") — (W™, 0z) + [az|*
= WP —o® =@ +|af
Iw|[* — o
which contradicts the construction of w that ||[v—z| > [|[v—w]| = ||[w]|

for any z € W.. Hence we have (z, wt) = 0 for any z € W. This means
wt € Wt and v =w + w is the required decomposition.

To prove uniqueness, suppose
V=w+w =z+2z"

where w,z € W and wt,z+ € W, Then

W—Z:ZJ_—WJ_

is a vector which lies in both W and W+. The vector w —z = z+ —w+

lies in both W and W+ which implies w — z = zt — w = 0 by (1).
Therefore the decomposition v = w + w is unique.

3. Let wi,...,w, € W be a basis for W and wy,...,w, € W' be a
basis for W+. For any v € V, by (2) there exists unique decomposition
v =w+w! where w € W and wt € W+, Then there exists constants
at, ..., B1,..., B, € Csuch that

v = w4+wh
_ 1 L
— alwla"'7@pwp+ﬂlwla"'7ﬁqwq'
On the other hand, the vectors wy, ..., w,, Wi, ..., w, are linearly in-

dependent since they are nonzero mutually orthogonal vectors (Propo-
sition|1.3.21]), and thus constitute a basis for V. It follows that p+q =n
which means dim(W) + dim(W+) = dim(V).

O

Theorem 1.6.15 (Spectral theorem for self-adjoint operator). Let V C C™
be a vector subspace and L : 'V — V be a linear operator on V. Then the
following statements hold.
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1. All eigenvalues of L are real.

2. There exists eigenvectors &1,&s,...,&, of L which constitute an or-
thonormal basis for V.

Proof. 1. Suppose £ is an eigenvector of L which means € # 0 and L(§) =
AE where )\ € C.

ME ) = (A6,6)
)

Since € # 0, we have A = A\ which means \ is real.

2. We prove the statement by induction on dim(V'). Suppose dim(V') = 1.
Let £ € V be a unit vector. Then L(&) = A for some scalar \ since
dim(V') = 1. Thus £ constitutes a basis for V.

Assume that the statement holds for any vector subspace of dimension
k. Let V C C™ be a subspace with dim(V) = k + 1. By fundamental
theorem of algebra, the characteristic polynomial of L has at least one
root A € C. Then ) is an eigenvalue of L which means there exists unit
vector & € V such that L(&;) = A&y Let

W={weV:w=a& for some a € C}

and
W ={wtcV:(&w) =0}

be the orthogonal complement of W in V' which is of dimension k& by
Proposition By Theorem we have L(w') € W+ for any
wt € W, Thus the restriction L|y : W+ — W of L on W can be
considered a linear operator on W+. It is not difficult to see that L]y .
is self-adjoint. Note that dim(W+) = k. By induction hypothesis,
there exists eigenvectors &1,...,& € W of L|y. which constitute a
basis for W+. Now &, &1, ..., &k, €xir € V are eigenvectors of L which
constitute an orthonomal basis for V. This completes the induction
step and the proof of the theorem.

[
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Theorem 1.6.16 (Spectral theorem for Hermitian matrices). Let H be an
n x n Hermitian matriz. Then the following statements hold.

1. All eigenvalues of H are real.

2. There exists an orthonormal basis for C" which consists of eigenvectors

of H.

3. There exists special unitary matriz U which diagonalizes H, that 1is,
U*HU is a diagonal matrix.

Proof. Let Ly : C* — C" be the linear operator defined by Ly(v) = Hv,
where we consider v as column vector. Then Ly is represented by the matrix
H with respect to the standard basis. Thus Ly is a self-adjoint operator since
H is Hermitian (Proposition . By spectral theorem (Theorem ,
all eigenvalues of Ly are real and there exists orthonormal basis &;,...,&,
for C" consisting of eigenvectors of Ly which are also eigenvectors of H.
This proves the first two statements. For the third statement, note that the
matrix U = [£1,...,§,] diagonalizes H (Proposition [L.5.9). Since &1,...,&,
constitute an orthonormal basis, U is a unitary matrix. One may multiply
a suitable complex number to the first column of U making its determinant
equals to one and keeping the matrix unitary. Then the resulting matrix is
a special unitary matrix which diagonalizes H. O

Note that a real matrix is Hermitian if and only if it is symmetric and is
unitary if and only if it is orthogonal. Thus we have the following spectral
theorem for real symmetric matrices.

Theorem 1.6.17 (Spectral theorem for real symmetric matrices). Let S be
an n X n real symmetric matriz. Then the following statements hold.

1. All eigenvalues of S are real.

2. There exists an orthonormal basis for R™ which consists of eigenvectors

of S.

3. There exists special orthogonal matriz () which diagonalizes S, that is,
QT SQ is a diagonal matriz.
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1.7 Some transcendental functions

In this section, we discuss the most basic transcendental functions namely,
exponential function, logarithmic function, trigonometric functions and hy-
perbolic functions. We will give the definitions, list some basic identities,

and do some calculus on them.

Definition 1.7.1. The exponential function, logarithmic function, trigono-
metric functions and hyperbolic functions are defined as follows.

1. Exponential function:

2 3

OOZL' Xz x
;k——l+x+§+§+ . forzeR

2. Trigonometric functions: There are 6 trigonometric functions which
are defined as follows.

o oo (ke 2 gt g
Cosine: Cosx_g::ow_l_?—i_lﬂ_g—i_ - forz eR
. . B 00 (—1)k$2k+1 _ 333 $5 :IJ7
SZ’HG. Slnl’—]gw—.@—y—'—a—ﬁ—f— fOTfEER
inx (2k+ )

Tangent: tanx =

fora:#T, kelZ

COS T

Cotangent: cotx = for x4 kr, kel
sin

(2k + )

forx;é ———, keZ

Secant: secr =

Cosecant: csCx =

forx#£kn, k€Z
x

3. Hyperbolic functions: There are 6 hyperbolic functions which are

defined as follows.
Hyperbolic cosine:

et O 2k B R
coshg = =% Z —1+—+—+——|— - forz e R
=0

41 6!
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Hyperbolic sine:

- 0 p2kt1 I
sinhx— T+ o+ —+5+ forzeR
kZ:O 2k +1 315 T J
Hyperbolic tangent:
inh
tanh g = Sl forz e R
cosh x
Hyperbolic cotangent:
cosh
cothx = — < forx #0
sinh
Hyperbolic secant:
sechr = forz eR
coshx
Hyperbolic cosecant:
cschx = forx #£0
sinh x

The exponential function can be interpreted as a certain limit which can
be used as an alternative definition.

Theorem 1.7.2. The exponential function satisfies

e — lim (1+ f)n
n

n—oo
for any x € R.

Another important transcendental function is logarithm which is the in-
verse of the exponential function. Note that the exponential function has the
property that for any x > 0, there exists a unique y € R such that eV = x.

Definition 1.7.3 (Logarithmic function). The logarithmic function is the
function In : Rt — R defined for x > 0 by

y=Inz if e’ = x.

In other words, Inx is the inverse function of the exponential function.
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The transcendental functions satisfy the following identities.
Proposition 1.7.4 (Identities for transcendental functions).

1. Exponential function:
(a) "tV = e¥e¥

() v =2

ey

(c) ek = (e®)* for k € Z
2. Logarithmic function:
(a) In(zy) =Inx +Iny
(b) lng =Inz—Iny
(c) In(z*) = kInx fork € Z

3. Trigonometric identities:

(a) cos?z+sinz=1; sec?z—tan’z=1; csc’x —cot’x =1

(b) cos(—x) =cosxz; sin(—z) = —sinz; tan(—zx)= —tanx
(¢) cos(z+y) = cosxcosy — sinzsiny;
sin(z + y) = sinx cosy + cos x sin y;

tanx + tany
tan(x =
(z+y) 1 —tanztany

(d) cos2x = cos?x —sin®z = 2cos’x — 1 =1—2sin’z;

sin 2x = 2sin x cos x;

2tanx

tan2r = ———
1 —tan“zx

4. Hyperbolic identities:
(a) cosh®’z —sinh®>z = 1; sech®r + tanh®z = 1; coth®x — csch®r = 1
(b) cosh(—z) = coshz; sinh(—z)= —sinhz; tanh(—z)= —tanhz

(¢) cosh(x + y) = cosh x cosh y + sinh z sinh y;
sinh(x + y) = sinh z cosh y + cosh z sinh y;
tanh x 4+ tanhy
tanh =
anh(z + ) 1 + tanh z tanh y
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(d) cosh2z = cosh? z + sinh? x = 2cosh? z — 1 = 1 + 2sinh? ;
sinh 2x = 2sinh x cosh z;

2 tanh
tanh 2z = Lﬁ
1+ tanh“ z

Proposition 1.7.5 (Derivatives of transcendental functions).

1. Exponential function:

o g
dx
2. Logarithmic function:
d 1
—Inzr = —
dx x
3. Trigonometric functions:
d . d .
—CcosT = —sinx; —sinz = cos x;
dx dx
— tanx = sec? x; — cotw = — csc? a;
dx dx
—secr =secxrtanz; ——cscx = —cscxrcotw
dx dx
4. Inverse trigonometric functz’onﬂ:
1 1
—COS X = ——F——;
dx N
d . 1
—sin” T = —;
dx V1—2?
tan~! !
—tan " x =
dx 1+ a2
"Here we define the inverse trigonometric functions as follows.
(a) cos™!:[-1,1] — [0,7]: For x € [-1,1], y = cos™! z is the unique value 0 < y < 7
such that cosy = z.
(b) sin™":[~1,1] = [-%,Z]: For z € [-1,1], y = sin” ' z is the unique value —% <y <

5 such that siny = x.

(c) tan™' : R — (=%, %): For z € R, y = tan~' 2 is the unique value —5 <y < % such
that tany = x.
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5. Hyperbolic functions:

— cosh x = sinh x; — sinh x = cosh x;
dx dx
2 d 2
— tanh x = sech”z; — cothx = —csch®z;
dx dx
—sechx = —sechx tanh x; —cschax = —cschx coth x
dx dx

6. Inverse hyperbolic functiomﬁ:

1
—coshtpr= —— .
Sy eosh Tz =

1
—sinh ™'z = ——;
dx Vaz+1

1
—tanh™'z =
dr T

Proposition 1.7.6 (Integrals of transcendental functions).

1. Ezponential function:
/ ede =¢e"+C

2. Logarithmic function:

/ldac—ln|x|+0
T
8The inverse hyperbolic functions can be expressed in terms of logarithm as follows.
(a) cosh™ :[1,400) = [0,400): cosh 'z = In(z + V22 — 1).
(b) sinh™: R — R: sinh™ 'z = In(z + V22 + 1).
(¢) tanh™':(=1,1) = R: tanh 'z = 1In(£2).

11—z
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3. Trigonometric functions:

sinzdr = —cosx + C;

/cosxdx =sinx + C}

4. Hyperbolic functions:

tan zdx = In sec x; /cotx—lnsinx+0;

secxdx = In|secx + tanz| + C; cscxdr = In|cscx — cot x| + C

tanh xdx = In cosh x;

/cosh xdr = sinhx + C; /sinh xdx = coshx + C;
/ cothz = Insinh x + C;

/sechxdx = tan"'sinhz + C; /cschmda: = In |cschz — cothz| + C

Exercise 1

1. Let u,v € R". Prove the polarization identity

1
(w,v) = 7 (la+v[* = flu=v|F)

2. Let u,v € R Prove that if (u,w) = (v,w) for any w € R?, then
u=v.

3. Prove that for any u,v € R?, we have u x v is orthogonal to both u
and v.

4. Prove that for any u,v € R?, we have

[l x v + (u, v)* = JJul*||v]]*

5. Let u(t), v(t) be two differentiable vector valued functions. Prove that

d du dv

E<u7 V> = <E7V> + <u7 E

)
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6. Let v(t) be a differentiable vector valued function. Suppose ||v|| is a

dv
constant independent of t. Prove that T is orthogonal to v for any t¢.

7. Let u,v,w € R3,
(a) Prove that
(ux (vxw),x)=(uw)(v,x)— (u,v)(w,x)

(U, u2) (ug,vy) )

for any x € R3. (Hint: use (u; xvy, ugxvy) = (vi,us)  (vi,va)
1, U2 1, V2

(b) Prove that

ux (vxw)=(uw)v—(uv)w
(c) Prove the Jacobi identity

ux (vxw)+vx(wxu)+wx(uxv)=0

8. Let @ = [v1, Va, v3] be a 3 x 3 matrix where vy, vy, vy are the column
vectors of ). Show that () is an orthogonal matrix, that is Q! = QT
if and only if vq, vy, v3 constitute an orthonormal basis for R

9. Let A be an n X n matrix.

(a) Prove that
(u, Av) = (ATu,v)

for any u,v € R™.

(b) Prove that if
(Au, Av) = (u,v)

for any u,v € R", then A is an orthogonal matrix.
10. Prove the following hyperbolic identities.

(a) cosh?x —sinh?z =1
(b) cosh(z + y) = cosh z cosh y + sinh x sinh y
(c) sinh(x + y) = cosh x sinh y + sinh x cosh y

11. Prove that
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(a) . coshz = sinhz
(b) . sinhx = coshx

d 1
(¢) —tanhz =

dx cosh? r

60
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2 Curves

2.1 Regular parametrized curves

The subject we are going to study in this chapter is curves in two or three
dimensional Euclidean space. The first problem is how do we define curves.
One may say that curves are one dimensional objects in the Euclidean space.
However it is not easy to define what dimension is for a general subset of
the Euclidean space. Moreover we would also like the curves to be suffi-
ciently smooth. In differential geometry, this is done by considering regular
parametrized curves. Intuitively, it is the trajectory of a moving particle.

Definition 2.1.1 (Regular parametrized curves). A regular parametrized
curve is a differentiable function r : (a,b) — R", n = 2 or 3, such that
r'(t) # 0 for any t € (a,b).

Figure 1: Regular parametrized curve

In daily language, curve usually refers to a collection of points. Here, by
parametrized curve, we mean a function from an open interval to R? or R3.
However, if two such functions have the same image, we may also consider
them to be the same as curves and say that the two functions are two different
parametrization of the curve.

One usually requires, though not necessary, the function defining a parametrized
curve to be injectivdﬂ However when we consider a closed curve, e.g. a cir-

9A function f is injective if f(z) = f(y) implies z = 3. In other words, any two distinct
elements in the domain of f cannot have the same image.
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cle, which has no end points, we will need more than one parametrization
function.

A curve on R? is called a plane curve and a curve in R? is called a space
curve. The requirement r'(t) # 0 guarantees that the curve does not have
a sharp turning point and tangent to the curve can be defined everywhere.

Example 2.1.2.
1. Straight line: Let (zq,yo) and (z1,y1) be two points on R?. The function
I‘(t) = ((1 - t):l)o + txq, (1 — t)yo + tyl), forO<t<1

defines a reqular plane curve which is a straight line segment joining
(x0,Y0) and (z1,y1). Yes, a straight line on the plane is a curve.

(z1,91)

r(t) = (1 — t)xg + twy, (1 — )yo + ty1)

(-7?07 ?/0)

Figure 2: Straight line segment

2. Clircle: Let r > 0 be a positive real number. The function
r(0) = (rcosf,rsinf), for 0 <6 < 2w

defines a circle with radius v centered at the origin.

3. Cycloid: The function
r(f) = (0 —sinf,1 —cosf), for 0 <6 <2x

defines a curve which is called a cycloid.



Towards Differential Geometry 63

r(0) = (rcosf,rsinb)

Figure 3: Circle

-1 0 16 2 3 4 5 6 7

Figure 4: Cycloid

4. Helix: The function
r(0) = (acosf,asinb, bh), ford € R
defines a curve which is called a helix.

The following example illustrates a curve which has an irregular point.

Example 2.1.3. Let v(t) = (t2,3). Then '(t) = (2t,3t*) and r'(0) = (0,0).
Therefore x(t) is not reqular at t = 0.
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Figure 5: Helix

2.2 Arc length

The first geometric quantity associated with a curve we study is its arc length.
It is a generalization of lengths of line segments to curves. The idea is to
cut a curve into n small pieces and approximate each piece with a small line
segment. Then sum up the lengths of the line segments and let n goes to
infinity. This is obtained by an integral.

Definition 2.2.1 (Arc length). Let r : (a,b) — R™ be a reqular parametrized
curve. Then the arc length of r is defined by

= / (1)1t

The first thing we check is that arc length is really a generalization of
length of line segment.

Example 2.2.2 (Arc length of line segments). Let

r(t) = (1 —t)wo +txy, (1 —t)yo +ty1), 0 <t <1,
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be the line segment joining (xo,vyo) and (z1,y1). Now

r'(t) = (z1— 2o, y1 — Wo)

@I = V(@ —20)? + (41 — m0)?

Thus the arc length of r is

/ @ = / Vo = 20 + (o1 — yo)Pet

= $1 - Io) + (y1 Yo)?

which is exactly the length of line segment joining (xo,vyo) and (z1,y1)-

The arc length of a circle of radius r is known to be 277 even for primary
students. Now may give a rigorous proof for this simple fact.

Example 2.2.3 (Arc length of circles). Let r(6) = (rcosf,rsinf), 0 < 6 <
2w, be the circle with radius v > 0 centered at the origin. Now

r'(t) = (—rsinf,rcosf)
IF' @) = Vr2sin?0+ r2cos? 6
= r

Thus the arc length of r is
2m 2m
/ e’ ()|t = / rdt
0 0
= 27r

Proposition 2.2.4 (Arc length of graphs of functions).

1. (Rectangular coordinates): The arc length of the curve given by the
graph of function y = f(z), a < x < b, in rectangular coordinates is

b
z:/ V1+ f2da.

2. (Polar coordinates): The arc length of the curve given by the graph of
function r =r(0), a < 0 < 3, in polar coordinates is

B
zz/ V2 +r2df.
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Proof. 1. Parametrized the graph of y = f(z) by r(t) = (t, f(t)), a <t <
b. Then

r'(t) = (1f)
I (@)l V1t f?

Therefore the arc length is

b b
1:/ ||r’(t)||dt:/ N

2. Parametrized the graph of r = r(0) by r(d) = (r(0) cosf,r(8)sinb),
a < 0 < . The rest is left for the reader as exercise.

]

Definition 2.2.5 (Arc length parametrization). We say that r(s) is an arc
length parametrized curve, or r(s) is parametrized by arc length, if
IIt’'(s)|| =1 for any s.

Using arc length parametrization has a lot of advantage. For example, it
makes calculating the arc length of a curve very easy.

Proposition 2.2.6. Let r(s), be an arc length parametrized curve. Then for
a < b, the arc length of r(s) from s =a to s =bisb— a.

Proof. Since r(s) is an arc length parametrization, we have [|r'(s)| = 1.
Therefore the arc length from s =a to s = b is

/ I ()lds = / =l =b—a

There are many other geometric quantities which are easier to be calcu-
lated using arc length parametrization. We may also use arc length parametriza-
tion to prove certain statements concerning curves because it always exists
and is unique.

]

Theorem 2.2.7 (Existence and uniqueness of arc length parametrization).
Let v(t) be a reqular parametrized curve. Then there exists increasing differ-
entiable function s = s(t) such that when r(s) is considered as a function of
s, it is an arc length parametrized curve. Moreover if s1(t) and so(t) are two
such functions, then so — s1 1s a constant.
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Proof. Let .
s(t) = / o

By fundamental theorem of calculus, we have s'(t) = ||/(¢)||]. Then when
r(s) is considered as a function of s and by chain rule, we obtain

dr_dsdr_

dr
- = = / R
G aas @l

r. . . . . .
Thus — is an unit vector which means r(s) is an arc length parametrization.

s
Suppose s;1(t), s2(t) are two increasing differentiable functions such that
r(s;) and r(sq) are arc length parametrizations. Then

dsy dr _ dr _ dsy dr
dt dsy dt  dt ds;

which implies

d82 o d81
dt| | dt|
. . . . ds3 ds .
Since both s1(t), s2(t) are increasing functions, we have prlinliry and it

follows that sy — s; is a constant.

To find the arc length parametrization of r(t), we do the following three
steps.

1. Find the arc length s(t) as a function of ¢ by
t
s()= [ 1w
2. Express t = t(s) in terms of s. In other words, make ¢ the subject in
s = s(t).
3. Substitute t(s) into ¢ in r(¢) to get the arc length parametrization r(s).

Example 2.2.8 (Arc length parametrization of helix). Let a,b > 0 be con-
stants. Find an arc length parametrization of the helizr(0) = (acos @, asin 6, bo).
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Solution. We have

r'(f) = (—asinf acosb,b)
IO = Va*+b?

If we let ¢ = Va2 + b2 and

s(0) = /06 v (£)||dt = /09 cdt = cf,

then 5
0=-
c
and
s . sb
r(s) = (acos —,asin —, —3>
c ¢ c
is an arc length parametrization of the helix. ([l

Example 2.2.9 (Arc length parametrization of catenary). Find an arc length
parametrization of the catenary r(t) = (t,cosht).

Solution. We have

'(t) = (1,sinht)

r
|r'(8)| = V'1+sinh®t = cosht

Let . .
s(t) = / |t (u)||du = / coshudu = sinht,
0 0
then
t=sinh™'s =1In(s + Vs2 + 1)
and

r(s) = (In(s+ Vvs?2+1),coshln(s+ vs%2+1))
= (In(s+ M),cosht)
= (In(s+Vs2+1),Vs>+1)

is an arc length parametrization of the catenary. ([l
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Example 2.2.10 (Tractrix). The tractrix is a curve parametrized by
r(t) = (secht,t — tanht), ¢t > 0.

Find the arc length parametrization of the tractrix.
Note: The tractriz may also be parametrized by

r(f) = (Sinﬁ,ln (cot g) — COSQ) , 0<0< g

Suppose L is the tangent to the tractriz at v(6) and P is the point of inter-
section of L and the y-axis. Then the angle between L and the y-axis is 6
and the distance between r(0) and P is always 1.

r = (secht,t — tanht)
0
= <sin 0, In <cot 2> — cos (-)>

1

Figure 6: Tractrix

Solution. We have

r'(t) = (—sechttanht, 1 — sech®t) = (—secht tanht,tanh®¢)
') = tanh £V/sech® + tanh®t = tanh .
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Thus the arc length function is

t
s(t) = /tanhudu
0

t .: h
_ / sin udu
o coshu

B /tdcoshu
~J, coshu

[In cosh ul})
= Incosht
Thus
e’ = cosht.
Now
x(s) = secht
B 1
"~ cosht
g 6_8

y(s) = t—tanht

= cosh™te® — V1 — sech?t
In(e® + Ve?s — 1) — V1 — e 2.

Therefore the arc length parametrization is

r(s) = (e %, In(e® + Ve —1) — V1 —e25), s> 0.

0

Although arc length always exists for any curve, it is in general very dif-
ficult to write it down explicitly.

We conclude this section by proving a simple geometric fact that straight
line is the shortest curve joining two given points.

Theorem 2.2.11. Let r(t) be a regular parametrized curve with r(a) = rg
and r(b) = ry. Then the arc length | of the curve fromt = a to t = b satisfies

[ > |ry —ro|

with equality holds if and only if v(t) is a line segment joining ro and ry.
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Proof. Let
ry—TIo
a=———.
[r1 = o

Since a is a unit vector, we have (r'(t),a) < ||r'(¢)|| for any ¢ and the arc
length of the curve satisfies

b
L= [ I
ab

> / (1), a)dt

— (r(b) — r(a).a)
= (r; —rop,a)

= |[[r1 —rol|.

The equality holds if and only if

for any ¢ which means
r'(t) = a(t)a

for some positive valued function «(t). Therefore

r(t) = B(t)a
where ((t) is a differentiable function such that 5'(t) = «(t), which implies
that r(¢) is a straight line segment. O

2.3 Curve curvature

The curvature of a curve describes how rapidly it is bending. To make a
rigorous definition, we need the unit tangent and unit normal vectors to the
curve.

Definition 2.3.1 (Unit tangent and normal vector). Let r(t) be a reqular
parametrized curve.

1. The unit tangent vector to the curve at r(t) is defined by

R0
TO=1eon
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In particular if v(s) is an arc length parametrization, then

T(s) =1'(s).
2. Suppose T'(t) # 0. We define the unit normal vector to the curve
at v(t) by
T'(t)
N(t) = ——.
1T ()]

In particular if v(s) is an arc length parametrization, then

_ Tls) _ ()
I e ()l

N(s)

Figure 7: Unit tangent and unit normal vector

We give some useful formulas for calculation.

Proposition 2.3.2. Let r(t) be a reqular parametrized curve and N(t) be the
unit normal vector. We have

<r/7 I.//>

]

d
1. —||r'|| =
ol
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/

r// <r/ r//>
2. T = — —
et e

Proof. 1. We have

d, , d —
Sl = SV
B <I‘”,I‘/>—|—<I‘,,I'”>
2,/(r',1’)
_ <r/’r//>
lidl
2. We have
T e[| x” — (& [r'])x’
[[x[|?
r// <r/’r//> ,
T

]

Now we define the curvature of a curve. There are many different ways to
write down its definition. Here we define it as the magnitude of the derivative
of the unit tangent vector with respect to arc length.

Definition 2.3.3 (Curve curvature). Let r(t) be a regular parametrized curve
and T(t) be the unit tangent to the curve at r(t). Then the curvature of the
curve at r(t) is
T (¢
0]
[/ (2]

In particular if v(s) is an arc length parametrized curve, the curvature is

r(s) = ()l

Curvature is a geometric property which is used to measure how much
‘banding’ a curve has. The first thing we expect is that a curve has zero
curvature if and only if it is a straight line segment.

Proposition 2.3.4. Let r(t) be a regular parametrized curve. Then the cur-
vature satisfies k(t) = 0 for any a <t < b if and only if v(t) is a straight line
segment joining ro and ry.
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Proof. Suppose r is a straight line segment. Then

r(t)=a+at)b

for some increasing function a(t) and constant vector a, b with ||b|] = 1.
Thus . H
r a
T = ; = T =
[l I (C]
is a constant unit vector which implies T'(¢) = 0 for any a < t < b. Therefore
Tl

Kk(t) 0

IO

for any a <t <b.
Conversely, suppose k(t) = 0 for any a < t < b. Then

T'(t)=0
for any a < t < b which implies

)
o) ="

is a constant unit vector. Thus
r'(t) = a(t)b
for some positive valued function a(t) and therefore
r(t)=a+fp(t)b

where [(t) is a differentiable function such that §'(t) = «(t) and a is a
constant vector. It follows that r is a straight line segment. O]

Now we give the formula for finding the curvature of plane and space
curves.

Proposition 2.3.5 (Formulas for curvature). Let r(t) be a reqular parametrized
curve.

1. Suppose r(t) = (x(t),y(t)) is a plane curve. Then

_ ’x/y// _ ’x//y/’
(x’2+y’2)% '
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2. Suppose r(t) = (x(t),y(t), z(t)) is a space curve. Then
_ e xx

“0 = e

Proof. Let r(t) be a regular parametrized curve. Then

. r
]

By Proposition [2.3.2]

d , <I‘/,I‘H>

prii i
Thus we have

T HI"HI‘” _ (%HIJH)IJ _ Hr/HQru _ <I", I‘”)I‘/
[x[|? TIE

Therefore the curvature is

_ 1T _‘

I

||r,”2r” _ <I'/, I,//>r/
(el

1. Suppose r(t) = (z(t),y(t)) is a plane curve. Then

- (ZE,, y/)
- (.77”, y//)
<I‘/, I‘H> = 2" + y/y//
||r/||2r// _ <I'/,I‘”>I‘/ _ (:E’Q + y/2)(l‘//’ y//) _ (x'a:" + y/y//

o 2 n ora 12 11N
= (2" —ayy" 2%y —aly'a")
/) "/

= (@Y —2"y)(=y . 2)
Therefore the curvature of r is

’xly// _ xl/y/’ y/2 + x/Q B |x/yll _ x//yl|

Vam+y?t @2ty

)@ y)

I0)
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2. Suppose r(t) = (z(t),y(t), z(t)) is a space curve. Then

||||r/||2r// N <I‘/,I‘”>I‘/H2
— <||r/H2r// _ <I'/,I'//>I‘/, Hr/HQr// - <r/7r//>r/>
= [l = 20, )2 P () )
= [P - ) )

= IPAR P = xfx")?)

= [le]P]r" x 2")*.
Therefore the curvature is
_ I < ]
B [[e/]]*
[ > x|
][

]

If r(s) is an arc length parametrized curve, we have a simple formula to
calculate the curvature.

Theorem 2.3.6. Suppose r(s) is an arc length parametrized curve. Then
1. k(s) = [["(s)]l
2. T'(s) = k(s)N(s)
Proof. Since r(s) is an arc length parametrization, we have [|t/(s)|| = 1 and
{T(s) =1'(s)
T'(s) =1"(s).

1. Now the curvature is

k()

2. We also have
T'(s)

T(s) = #"(s) = In"(5) | g gy = ()N
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O

Intuitively, a circle is a curve which is banding in a uniform way. Thus
we expect the curvature at any point of a circle is the same. Moreover the
larger the radius of the circle the smaller the curvature is expected. We are
going to show that the curvature of a circle is uniform and is equal to the
reciprocal of its radius.

Example 2.3.7 (Circle). Let r(f) = (rcosf,rsinf), 0 < 0 < 2w, be the
circle of radius v > 0 centered at the origin. Then

r'(0) = (—rsinf, r cosb)
r"(0) = (—rcosf, —rsinf)

Thus
‘x/y// o $1/y/‘
(27 + y/Q)%
72 sin? 6 + 12 cos? 0|

(12 cos? § + r2sin” f)

k(0) =

3

2

1

-

Example 2.3.8 (Cycloid). The cycloid is the curve parametrized by
r(f) = (0 —sin6,1 — cos), ford e (0,2m).

Show that the curvature of the cycloid is

Proof. Observe that

r'(0) = (1 — cosf,sin§)
r"(f) = (sin#, cos §)
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Therefore the curvature of the cycloid is

’x/y// _ x//y/’

(31/2 + y/Q)%

|(1 — cos @) cos @ — sin O sin b
((1 = cos6)? + (—sin6)?)2

() =

B 1 —cosé
B (2 —2cosb)3
B 1
25T —cosO

Let’s see some examples of curvature of space curves.

Example 2.3.9 (Helix). Let a,b > 0 be constants. The space curve r(f) =
(acosB,asinb,bl), 0 € R, is called a helix. Then

r'(0) = (—asinf,acosb,b)
r"(0) = (—acosf,—asinb,0)
We have

r' x v = (absin @, —abcos ), a*)

[l > "

']}
avatb?
(a2 +b?)3

a

Observe that the curvature is constant in this case.

K(0)

Proposition 2.3.10 (Curvature of graphs of functions).

1. (Rectangular coordinates): The curvature of the curve given by the
graph of function y = f(z) in rectangular coordinates is
/"]

= e
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2. (Polar coordinates): The curvature of the curve given by the graph of
function r = r(0) in polar coordinates is

|2 — ]

(r2 4 7”2)%

r(6)

Proof. 1. Parametrized the graph of y = f(z) by r(t) = (¢, f(¢)). Then

{r’<t> = (L, f))
r(t) = (0, f")
Thus

\x’y” . x”y’\
(2 +y’2)%
/"]

(124 f2)>
2. Parametrized the graph of r = r(0) by r(0) = (r cos0,rsin€). Then
r'(0) = (1" cos@ — rsinf, r'sinf + r cos )
r’(0) = (r" cos@ — 2r'sin@ — rcos 6, " sin @ + 21’ cos 6 — rsin h)
Thus
|x’y” . I//y/|
(22 + yxz)%
|2r"2 — rr' + r?|
(r2 + r’2)%

[]

Example 2.3.11 (Catenary). The catenary is the curve given by the graph
of the function y = coshx. Show that the curvature of the catenary is

1

R = — 5 -
cosh” x
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y = coshx

2 1 0 1 2

Figure 8: Catenary

Proof. Observe that

f"(x) = coshz.
By Proposition [2.3.10, the curvature of the catenary is
/]

k= —
(1+f7)2
cosh z
(1 + sinh®z)?
cosh x
(cosh? z)?
1

cosh? x

{f’(m) = sinh z,

Let’s summarize the above calculation in the following table.

80
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81

Parametrized Curve Arc length Curvature
Plane curve b ' "o
£(t) = (2(2). (1) la | ()= L0
a<t<b a (27 +y7?)>
Space curve b , It/ x ¢
r(t) = (x(t), y(t), 2(t)), x| K(t) = T
a<t<b @ r
Arc length parametrized curve
r(s) with [jr(s)[| = 1 b—a k(s) = [ (s)]]
a<s<b
Circle 1
r(f) = (rcosf,rsinf), 27r K= -
0<6<2m "
Cycloid 1
r(f) = (0 —siné, cos ), 8 5
0 € (0,2r) 224/1 — cos 6
Helix
r(f) = (acosf,asinb, bf), 2mva? + b? %
0<0<2m @ +b
Graph of function y = f(2) .
in rectangular coordinates - i
£(t) = (1, /(1) [V
a<t<b
Graph of function r = r(6)
in polar Coordina.tion /6 N |72 + 212 — :r”|
r(f) = (rcosf,rsind), N (r2 +172)3
a<f<p

Another way to interpret the curvature of a curve is that is the change of
angle of tangent vector with respect to arc length.

Proposition 2.3.12. Let r(s) be an arc length parametrized plane curve and
0(s) be the angle between T and positive x-azis. Then

(o) = |

ds
(z(s),y(s)). Then T = r' = (,y') and |r']] =

Proof. Suppose r(s) =
Va? +y? =1 Now

/
0 = tan~' 2,
T
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Thus

ﬁ _ 1 2y — y'z"
ds 1+ f;% 22

— x/y// _ y/x//
since 22 + y'? = 1. Therefore

ﬁ
ds

K = ’x/yl/ _ y/ml/’ —

This inspires us to give a sign for the curvature.

Definition 2.3.13 (Signed curvature). Let r(t) = (x(t),y(t)) be a regular
parametrized curve. The signed curvature, also denoted by k, of r is

o do B 2y — 'z
r(t) = ds (2 +y’2)%

where 0 is the angle between the unit tangent vector T and the positive x-axis
so that T = (cosf,sin).

The objects we have studied up to now are open curves. We are going to
explains a theorem which concerns closed curves.

Definition 2.3.14 (Simple closed curve). A regular simple closed curve
in R? is a closed and bounded connected subset C C R? such that for any
point p € C, we may find an open set U, C R? containing p such that U,NC
is the image of a reqular parametrized curve.

There is a natural orientation which leads to a natural sign of curvature
on a regular simple closed curve. The Jordan curve theorem asserts that
a simple closed curve in R? separates the plane into two regions, one bounded
and another unbounded. We say that a regular parametrization of a simple
closed curve is positively oriented if the region bounded by the curve is to
the left of the tangent direction.

On a regular simple closed curve, we may find a positively oriented regular
parametrization r(t), a <t < b, such that r is injective on (a, b) and r(a) =
r(b). Define a function 6(t), a < t < b, which is continuous and 6(¢) is the



Towards Differential Geometry 83

angle between the unit tangent vector T(¢) and the positive z-axis so that
T = (cosf,sinf). The choice of 6(t) is not unique but any two choices are
different by a multiple of 2. Then since T(a) = T(b), the value 6(b) — (a)
must be a multiple of 27. For regular simple closed curve, we must have
0(b) — 6(a) = 2.

Theorem 2.3.15. Let r(t), a < t < b, be a positively oriented regular
parametrization of a regular simple closed curve C' such that x(t) is injec-
tive on (a,b) and r(a) = r(b). Let 0(t) be a continuous function such that
O(t) is the angle between the unit tangent vector T(t) and the positive x-axis

so that T = (cos#,sinf). Then 6(b) — 0(a) = 27.

Sketch of proof. We are going to deform the simple closed curve C'. When
we deform the curve, the quantity 6(b) — 0(a) must keep constant. This
is because 6(b) — #(a) would change continuously when the curve is being
deformed and the quantity only takes integer values which forces it to be
constant. Now a regular simple closed curve can always be deformed regu-
larly into the unit circle. (This is where the assumption that the closed curve
C'is simple is being used.) By considering the positive oriented parametriza-
tion r(t) = (cost,sint), 0 < t < 27, of the unit circle, the unit tangent vector
is T(t) = (—sint,cost) and we see that an angle function can be chosen to
be 6(t) = t+75. Now we have 0(27) —0(0) = 27 and the proof of the theorem
is complete. 0]

Signed curvature of a simple closed curve can be considered as the con-
tinuous version of exterior angles of a polygon. The following theorem is the
continuous version of the theorem for sum of exterior angles of polygon.

Theorem 2.3.16. Let C be a simple closed curve and x be the signed cur-
vature defined by positively oriented parametrization. Then

/ Kkds = 2.
c

Sketch of proof. Let r(t), a <t < b be a positively oriented parametrization
of C so that r(t) is injective on (a,b) and r(a) = r(b). Let 0(t) be the angle
between T(t) and positive z-axis which is a continuous function such that

T = (cosf,sinf). Now k = — and using Theorem [2.3.15, we have

/;gds—/c—ds—/déze(b)—ﬁ(a):
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O

The curvature of a curve can be interpreted in at least two more ways.
First, a regular parametrized curve r(t) can be considered as the displacement
of a moving particle at time t. Then v = r’ is the velocity of the particle.
We may write the acceleration a = r” as a linear combination of orthogonal

d
vectors T and N. It is known that the projection of a along T is M

and the normal component depends on the velocity of the particle and the
curvature of the curve.

Proposition 2.3.17. Let r(t) be a reqular parametrized curve. Then
dv
a= I‘” = —T + H’UQN
dt

where v = ||v|| = ||*']].

Proof. First, we have
v'(t) = v(t)T(¢).
Let s be an arc length parameter, that means s(t) is a function such that

% = ||/(¢)||. Then diT = kIN by Theorem [2.3.6/ and we have
s

dv d
L L
r i Tl

dv ds d
_ Y., %y
ar - T Vatds

= %T + Kkv?N.

]

In the view of the above proposition, we may also define curvature to be
the normal component of acceleration divided by the square of speed, that
is,

iy BN

[(£)][]>
There is one more way to interpret the curvature of a curve. When we
consider r(t) as the displacement of a moving particle, we try to find a circle
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which is closest to the trajectory of the particle at a certain point on the
curve. Then the curvature of the curve at that point can be interpreted as
the reciprocal of the radius of that circle.

Let’s summarize the fact about curvature of a curve in the following
proposition.

Proposition 2.3.18. Let r(t) be a reqular parametrized curve. Let s(t) be

ds
an arc length parameter, that is, — = ||v'(t)|| or equivalently ||—|| = 1. Let

dt ds
T and N be the unit tangent and normal vectors, which can be considered as

vector valued functions of t or s, respectively. The curvature k of the curve
is characterized by any of the following conditions.

1.
ol
"0 = )
2. T
s kN

3. If r = (z,y) is a plane curve, we have
_ |$/y// _ .T”y/|
(272 +y’2)% '
4. If r = (z,y,2) is a space curve, we have

_ e

K =
][>

o=

6. If r = (z,y) is a plane curve and 0 is the angle between T and the
positive x-axis, that is, T = (cos,sinf), then we have

d*r

ds?

df
K= —.
ds
7.
/" d,U 2 /
r" = —T + kv°N, where v = ||r'(t)]|.

dt
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2.4 Frenet frame

In this section, we study space curve. We have define unit normal to a curve

/ . . . . .
by N = -X_ . For space curve, there is one more direction which is orthogonal
IT7]] ’

to the unit tangent vector which is called binormal.

Definition 2.4.1 (Binormal). Let r(t) be a space curve with curvature k(t) >
0 for any t. We define the unit binormal to the curve by

B(t) = T(t) x N(t).

Figure 9: Binormal
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Note that T, N, B form a orthonormal basis for R®. This basis depends
on t and we may consider it moving along the curve. We call it the Frenet
frame and this is the simplest example of moving frame. We would like to
study how this frame moves along the curve.

Definition 2.4.2 (Torsion). Let r(t) be a space curve with curvature k(t) > 0
for any t. The torsion of the curve at r(t) is defined by

dN
(=B
(&e)

ds
where s is a arc length parameter, which means i |lr'(t)]|. Equivalently,

N
Tt = <||r'<t>||’B(t>>

Here we give a formula for finding 7.

we have

Proposition 2.4.3. Let r(t) be a space curve with curvature k(t) > 0 for
any t. Then
<I,/ X I,// I.///>

T= ||I‘/ % I.//||2 :

Proof. Note that
r = ||¢|T
d
! /
= — T
¢ = ()

d||’]
— T / T/
Wl 4 e
(r',r") , , i
= T + ||t'||(k]|r'||N) (Proposition [2.3.2)

]l
/ !

_ O PN
']

So

/ /!
' xr” = |||T x <<T|;_,r”>T+/iHr/||2N>

= &|Y|PT x N
= «[r'|’B
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Thus
o] =
d <r/ I,//> <r/ I,//> d
n — s I T I T/ . /112 N / QN/
o = o () T ST ) N e

d <I‘I, r//> <I'/, I_//> d
= - ( I ) T + ] (kN) + p (/@Hr’||2) N + &|r'||*N’
Note that (T,B) = (N,B) = 0. Thus
(' xx”x") = (sll|°B, kllr'||*N)
= &[Ir'I(N', B)
N/

= (kI (s

[l

= |’ x1"|*r

B)

Therefore
o <r/ X r//7r///>
||I‘/ % I.//HQ :

]

Theorem 2.4.4 (Frenet formula). Letr(s) be a reqular space curve parametrized
by arc length with curvature k(s) > 0 for any s. Then

T'(s) = kN
N'(s) = —kT +7B
B'(s) = —7N

We may write the formula in matrixz form

d T 0 k 0 T
7 = - 0 7 N
\ B 0 —7 0 B

Proof. First by definition of curvature (Definition [2.3.3]), we have
T'(s) = kNN.

We are going to use the following fact. If u(t) and v(t) are two vector
valued functions with (u,v) being constant, then (u’,v) = —(u,v’) (See
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Lemma |1.3.35)). In particular if ||v|| is constant, then (v/,v) = 0. Now since
(N, T) =0 for any s, we have

(N'(s),T) = —(N,T'(s))
= —(N,&N)
= —K
Moreover since |N|| = 1 is a constant, we have
(N'(s),N) = 0.

Observe that T, N, B constitute an orthonormal basis for R3. We get

N'(s) = (N'(s),T)T + (N'(s),N)N + (N'(s),B)B
= —xkT+7B

Applying the same argument to B'(s), we have

{<B’<s>,T> — (B, T'(s)) =0
(B'(s),N) = —(B,N'(s)) = —7

since (B, T) = (B,N) =0 and
(B'(s),B) =0
since ||B|| = 1 is constant. Therefore

B'(s) = (B(s),T)T + (B'(s), N)N + (B'(s), B)B
= —71N

[]

In the last section, we define plane curve as a curve in R?. However, we
would also call a space curve a plane curve if it lies on a plane in R3.

Definition 2.4.5 (Plane curve). We say that a space curve r is a plane
curve if there exists a unit vector n such that

(r,m) =a

15 a constant.
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The vector n in the above definition is the unit normal vector of the plane
containing the curve. The curvature x of a curve measures how far a curve
is away from straight and the torsion 7 measure how far it is away from a
plane curve.

Proposition 2.4.6. Let r(t) be a reqular parametrized space curve with cur-
vature k(t) > 0 for any t. Then r is a plane curve if and only if its torsion
7(t) =0 for any t.

Proof. By Proposition [2.2.7] we may consider the arc length parametrization
r(s) of the curve. Suppose r(s) is a plane curve. Then there exists constant
unit vector n such that

(r,n) =a

is a constant. Observe that

which implies that (r' x v’ ") = 0. Therefore

<r/ X r//7r//l>
= = 0
T Hr/ X I.//”2

Conversely Suppose 7(s) = 0 for any s. Then by Frenet formula (Theorem
2.4.4), we have
B'(s)=—-TN =0

for any s. Thus the binormal B is a constant vector and

%(r, B) = ('B)+ (r,B)
= (T,B) — 7(r,N)
=0

for any s. Therefore (r, B) is constant which means r is a plane curve lying
on a plane with normal vector B. O



Towards Differential Geometry 91

We end this section by stating the fundamental theorem of space curves
without proof.

Theorem 2.4.7 (Fundamental theorem of space curves). Let k(s), 7(s) >0
be two positive functions. Then there exists unique, up to rigid transforma-
tion, space curve r(s) parametrized by arc length with curvature x(s) and
torsion 7(s).

Exercise 2

1. Write down a regular parametrization of the following curves in R?

(a) The line segment joining (1, —2) and (—3,2).
(b) The circle of radius 5 centered at (3, —1).

: : R
(c) The ellipse with equation % + % = 1.

2. Find the arc-length of the following plane curves.

2443
a 6x

(a)

(b) y? = 23 from (0,0) to (4,8).

(¢) The astroid defined by T+ y% =1.
)

(d) The deltoid parametrized by r(f) = (2cosf + cos26,2sinf —
sin26), 0 < 6 < 27.

fromxz=1tox=2.

Y
Y

3. It is given that the following curves are parametrized by arc-length.
Find the value of p where p > 0.

(a) r(0) = (4sinph, —4 cos pd, 3p0)
(b) r(d) = (pcosh,2 +sinf, 1 — */756089), for 0 < 6 < 2m.
(c) r(t) = (301 +1)3, 3(1— )2, pt) for 0 < t < 1.
4. The logarithmic spiral is a curve defined by r = €’ in polar coordinates.

(a) Find the arc-length of the logarithmic spiral from 6 = 0 to 6 = 2.
(b) Find the curvature of the logarithmic spiral.
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5. The tractrix is the curve parametrized by

™

r(f) = (sin 6, cos 6 + In (tan g)) , for 6 € (0, 5)

(a) Show that if the tangent to the tractrix at a point p meet the
y-axis at ¢, then the distance between p and ¢ is 1.

(b) Show that ||r'(9)|| = cot 6.

(c) Show that the arc length of r(¢) from 6§ = o to 6 = 7 is —Insina.

(d) Show that the curvature of the tractrix is given by k() = tané.

6. Given a circle of radius R and it is rolling along a straight line (which
may be assumed to be the z-axis). Let P be a point on the circum-
ference of the circle of radius R. The curve travelled by the point P,
i.e., the locus of P, is called a cycloid. Let 6 be the angle between the
vertical line (y-axis) and the radius from the center of the circle to P.
The cycloid is parametrized by

r(0) = (R(0 —sinf), R(1 — cosf)), for 0 < 0 < 27
(a) Show that r’ is orthogonal to r — (R6,0) and ||r'|| = ||r — (R0, 0)|
for any 0 < 0 < 2m.
(b) Find the arc-length of r from 6 = 0 to 6 = 2.

(c¢) Find the curvature of r in terms of 6.

7. Consider the curve C given by the graph of the function y = Incscz,
0 < x < m, in rectangular coordinates.

(a) Show that r(s) = (2tan™'e® Incoshs), s € R is an arc length
parametrization of C'.
(b) Show that the curvature of the curve is

1
ri(s) = cosh s

8. Prove that the curvature of the curve defined by r = () in polar
coordinates is given by
1272 — rr” 4 1?|

(r2 4 7“’2)g

k(0) =
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9.

10.

11.

12.

13.

14.

Let r(t) = (x(t),y(t)) be a regular parametrized curve. Suppose there
is a differentiable function 6(t) such that tanf(t) = z,gg for any t.
Prove that

do CL’/y// . y’x”
% - le + y12

Let r(t) be a regular parametrized curve and k(t) be its curvature.

Prove that if x(t) = 0 for any ¢, then r(t) is a straight line.

Let r(s) be a regular arc length parametrized plane curve with curva-
ture x which is a constant.

d 1
(a) Prove that P (r(s) + —N(s)) = 0 where N is the unit normal
s K

vector.

(b) Hence show that r(s) lies on a circle.

Let r(s), =1 < s < 1, be an arc length parametrization of a simple

where a is a constant. Find

closed curve with curvature x(s) =
1+ s2
the value of a.

The tractrix is the curve parametrized by
r(t) = (secht,t — tanht), ¢t > 0.
(a) Suppose the tangent at r(t) intercept the y-axis at ro(t). Prove
that the distant between ry(¢) and r(¢) is constantly equal to 1.

(b) Find an arc length parametrization of the tractrix so that s = 0
corresponds to the point (1,0).

(c) Show that the curvature of tractrix is
k = cscht =

e?s — 1

Let r(t) be a regular parametrized plane curve with x(¢) > 0 for any ¢.
Let A > 0 be a constant. The parallel curve r) of r is defined by

ry(t) =r(t) — AN(¢)
where N(?) is the unit normal vector at N. Show that the curvature of

() is —
T 1S .
A 1+ Ak
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15.

16.

17.

18.

Find the curvature x(t) and torsion 7(t) of the following space curves
r(t).

(a) r(t) = (4cost,4sint, 3t)

(b) r(t) = (cosht,sinht,t), t € R

)

(c) r(t)

Let r(t) be a regular parametrized space curve with x(t) > 0 for any
t. Suppose 7(t) = 0 for any ¢, where 7(t) is the torsion at r(t). Prove
that r(¢) is contained in a plane.

(cos®t,sin®t,cos 2t), 0 < t < g

Let r(s) be a regular space curve with arc length parametrization, N(s)
and B(s) be the unit normal and unit binormal to the curve respec-
tively. Let x(s) and 7(s) be the curvature and torsion of the curve.
Suppose r(s) lies on the unit sphere for any s.

1
(a) Prove that (r,N) = —— for any s.
K

1 /
(b) Prove that r = ——N + " B.

K K21

Let r(s) be a regular space curve with arc length parametrization, T|(s)
and N(s) be the unit tangent vector and unit normal vector respec-
tively. Suppose k(s) > 0 for any s and there exists a constant ¢ and a
constant unit vector u such that (T(s),u) = ¢ for all s.

(a) Show that N(s) and u are orthogonal for all s.
(b) Using (a), show that there exists a constant  such that

u = cos 0T (s) + sinOB(s)

for all s.

7(s)

(c) Using (b) and the Frenet formulas, or otherwise, prove that o) =
k(s

cot 6.
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3 Surfaces

3.1 Regular parametrized surfaces

In the last chapter, we study curves by parametrization which is a function
from an open interval (a,b) to R?* or R3. We also require a parametriza-
tion r(t) to be regular, which means r'(¢) # 0, to ensure that the curve is
sufficiently smooth. Similarly we consider regular parametrized surface.

Definition 3.1.1 (Regular parametrized surface). A regular parametrized
surface is a differentiable function x : D — R3, where D C R? is an open
connected subset, such that x, X X, # 0, for any (u,v) € D C R?. The image
S =x(D) C R® is called a regular surface.

For x(u,v), we denote x, = % and x, = g—’; to be the partial derivatives
of x. Note that the condition that both x, # 0 and x # 0 is not sufficient
for x(u,v) to be regular. We require that x, x x, # 0 which geometrically
means that the vectors x,, and x, span a nondegenerate parallelogram in R3.

A curve is an one dimensional object and there is only one tangent direc-
tion. A regular surface x(u,v) has infinitely many tangent directions which
includes x,, x, and all their linear combinations.

Definition 3.1.2 (Tangent space). Let S be a reqular surface with parametriza-
tion x(u,v). The tangent space of S at p = x(u,v) is

T,S = {ax, + fx, : a, f € R} C R,

We call it a ‘space’ because the tangent space is a vector space. In other
words, the tangent T,,S satisfies the following condition.

For any u,v € TS and «, 8 € R, we have au+ v € T,S.
Example 3.1.3.
1. Sphere: Let r > 0 be a positive real number. The function
x(¢,0) = (rsin¢cosf, rsingsinb, rcos @), for (¢,0) € (0,7) x (0,27)

defines a sphere of radius r centered at the origin.
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Figure 10: Tangent space

2. Torus: Let R > r > 0 be positive real numbers. The function
x(¢,0) = ((R+rsin¢) cos b, (R+rsin ¢)sin b, rcos ¢), for ¢,0 € (0,2m)
defines a reqular surface which is called torus.
3. Helicoid: Let a > 0 be positive real numbers. The function
x(u,0) = (ucos@,usinb, ad), foru,0 € R

defines a reqular surface which is called helicoid.

3.2 First fundamental form and surface area

Analogue to the arc length of a curve is the surface area of a surface. To
define surface area, we introduce the first fundamental form.

Definition 3.2.1 (First fundamental form). Let x(u,v) be a reqular parametrized
surface. The first fundamental form of x is the 2 X 2 matriz valued func-

tion
o (B PN xwexe) (Xux)
C\F G )\ XX (Xex) )
Here E, F, G are ordinary real valued functions and the first fundamental
form [ is a matrix valued function of u,v. Note that I is symmetric because
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Figure 11: Sphere

(Xy, Xy) = (X,,%,) by property of scalar product. The determinant of I has
another interpretation.

Theorem 3.2.2. Let x(u,v) be a reqular parametrized surface and I be its
first fundamental form. Then

det(]) = ||x, x x|
In particular, we have det(I) > 0 for any u,v.

Proof. The first statement follows by Proposition (1 Since x(u,v) is
regular, we have x,, X x,, # 0 which implies det([) = ||xu X x,[|* > 0 for any
u,v. Ul

Now we give the definition of surface area of regular surface.

Definition 3.2.3 (Surface area). Let S be a reqular surface with parametriza-
tion x(u,v), (u,v) € D. The surface area of S is defined by

= /D\/Mdudu.
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Figure 12: Torus

Note that by Theorem the surface surface can also be expressed as

A= // 0 x %, || dud.
D

To see that this gives the surface area of the surface, one may cut the surface
into small pieces which can be approximated by small parallelograms spanned
by x(u + Au,v) — x(u,v) =~ Aux,(u,v) and x(u,v + Av) — x(u, v) &~ Avx,.
Then the area AA of each small piece can be approximated by the parallel-
ogram and we have

AA = [|Aux, X Avx, || =[xy X Xu||AulAwv.

Therefore the surface area of the surface is

A= limz ||xu X %, ||AuAv = // ||xu X x,||dudv.
D

Someone may ask why we write /det (/) instead of ||x, X x,|| in the definition
of surface area. One reason is that cross product is defined only on R?® but
scalar product can be calculated in any dimension which allows us to use
Definition to define surface area of regular surface in R™ for any n > 3.
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Figure 13: Helicoid

Example 3.2.4.

1. Sphere: The function
x(¢,0) = (rsingcos,rsingsind, rcos¢), 0 < ¢ <m,0<0 <27
parametrizes the sphere of radius r centered at the origin. We have

Xy = (rcos¢cosf,rcos¢sind, —rsin @)
Xg = (—rsin¢sind, rsin ¢ cos b, 0).
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The first fundamental form is

;o (EX@X@ <X¢,X9>)

X97X¢> <X97X9>

- r? 0
N 0 r’sin®¢ )

Therefore the surface area of the sphere is

/:ﬂ /07T \/r2(r2sin® ¢)dpd = /0: /07r r? sin ¢pdodl

= / [—7% cos |7 db
0

27
= / 2r2d0
0

= 4qar’.

2. Torus: The function
x(¢,0) = (R+rsing)cosf, (R+rsing)sinfd, rcos¢),0 < ¢,0 < 27
parametrizes a torus. We have

Xy = (rcos¢cos,rcospsinb, —rsin @)
xg = (—(R+rsing)sind, (R + rsin¢)cosd,0).

The first fundamental form is

| 2 0
N 0 (R+rsing)? )

Therefore the surface area of the torus is

2w 2 2w 2
/ V72(R 4+ rsin ¢)2dodd) = / / r(R + rsin ¢)dpdb
o Jo o Jo
2

= / [r(Rp — 7 cos ¢)]5™df

0

2T
= / 2mr Rdo
0

= 47°rR.
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Note that the surface area of the torus is the product of the circumfer-
ences of two circles of radius r and R.

Let’s calculate the surface area of surfaces given by graphs of functions.
Theorem 3.2.5 (Surface area of graphs of functions).

1. Rectangular coordinates: Let 2 = f(x,y), (v,y) € D C R?, be a
differentiable function. The surface area of the graph of z = f(x,y) in
rectangular coordinates s

A= / /D mdmdy.

2. Cylindrical coordinates: Let z = f(r,0), (r,0) € D C RT x (0, 27),
be a differentiable function. The surface area of the graph of z = f(r,0)
i cylindrical coordinates is

A= // \/7«2 L2 f2 4 f2drde.
D

Proof. 1. The surface is parametrized by x(x,y) = (x,y, f(x,y)), (z,y) €

D. Then
Xy = (LOafx)
Xy = (Ovlvfy>

and the first fundamental form is

_ <Xuaxu> <Xuaxv> )
I = < (X, Xu) (X, Xy)
_ ( L+ 12 fofy )
foly 1+fy )

Therefore the surface area is

4 = //D \/dedy
] O s

_ / /D JU+ f2+ frdudy
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2. Parametrize the graph of the function z = f(r,#) in cylindrical coordi-
nates by
x(r,0) = (rcosf,rsinb, f(r,0)), (r,0) € D.

The rest is left for the reader as exercise.

]

Theorem 3.2.6 (Surface area of surfaces of revolution). Let f(z) > 0, z €
(a,b) be a positive differentiable function. The surface area of the surface
obtained by rotating the graph of x = f(z) in the xz-plane about the z axis is

b
A= 27r/ A1+ f2dz.

Proof. The surface is parametrized by x(6,z) = (f(z)cos@, f(z)sind, z),
(0,2) € (0,27) x (a,b). The rest is left as exercise for the reader. O

3.3 Second fundamental form and Gaussian curvature

Recall that the vectors x, and x, are tangent to the parametrized surface
x(u,v) in R3. A normal vector to the surface is a vector orthogonal to both
x, and x, which can be obtained by taking the cross product of x, and x,,.

Definition 3.3.1 (Unit normal vector). Let x(u,v) be a reqular parametrized
surface. The unit normal vector to the surface is
Xy X Xy

n—=-———.
% X %]

Note that there are two directions, namely n and —n, normal to a surface
in R3. Changing the order of parameters u,v would invert the direction of
the unit normal vector n. A vector is tangent to the surface if it is orthogonal
to n. This gives another description of tangent space to the surface.

Proposition 3.3.2. Let S be a regular surface with parametrization x(u, v).
Let T,,S be the tangent space to the surface at a point p = x(u,v). Then

7,8 ={veR*: (v,n) =0}.

Next we define the second fundamental form which is, similar to the first
fundamental form, a 2 x 2 matrix valued function of u, v.
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Figure 14: Unit normal vector

Definition 3.3.3 (Second fundamental form). Let x(u,v) be a regular parametrized
surface which has continuous second derivatives. The second fundamental
form is the 2 x 2 matrix valued function

_[I _ ( € f ) o ( <X’U/u7 n> <X’LL'U7n> ) _ ( <XU7 nu) <XU7 n’U> )
fg (Xpu, 1) (Xpw, 1) (Xo,0y)  (Xp,1p) )
Here we have given two equivalent formulas to calculate the second fun-
damental form. The two formulas give the same function for the following

reason. Observe that (x,,n) = 0 for any u,v. Differentiating the equality
with respect to v, we have

0
%<xu,n> =0
<Xuv: n> + <XU7 nv> = 0
<Xuv;n> = _<Xuvnv>
We may obtain, in a similar way, the equalities (x,,,n) = —(x,,n,) and
Xy, ) = —(X,,n,) and we see that the two formulas in Definition [3.3.3]

give the same function. Here we have used an argument basically the same
as the proof of Lemma [I.3.35 Note that, similar to first fundamental form
I, the second fundamental form /7 is also a symmetric matrix. This follows
from the standard fact in multivariables calculus that when calculating the
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second order derivative of a function, the order of differentiation does not
matter if the function has continuous second derivatives. In particular, we
have x,, = X, for any u, v and hence I is symmetric from the first formula
in Definition [3.3.3] Now we are ready to introduce the important notion of
Gaussian curvature in differential geometry.

Definition 3.3.4 (Gaussian curvature). Let x(u,v) be a reqular parametrized
surface which has continuous second derivatives. The Gaussian curvature
of the surface is

o det(IT)  eg— f?

~ det(])  EG-F?
where I 1s the first fundamental form and I1 is the second fundamental form
of the surface.

Example 3.3.5.
1. Sphere: A sphere of radius r centered at the origin is parametrized by
x(¢,0) = (rsingcosf,rsingsind, rcos¢), 0 < ¢ <m,0< 0 < 27.
We have

Xy = (1 cos ¢ cosf,rcospsinb, —rsin @)
Xy = (—rsin¢sin b, rsin ¢ cos b, 0)

and the first fundamental form is
r? 0
I:(O r251n2¢)‘

X4 X Xg = (r?sin® ¢ cos 0, r? sin® ¢ sin 0, 7% sin ¢ cos ¢)

Now

and the unit normal vector is
Xy X Xy

n=——— = (sin¢cosh,sin¢sinb, cos ).
[E

Thus

ng = (—sin¢sind, sin ¢ cosf, 0)

{n¢ = (cos ¢ cos @, cos ¢ sin b, — sin ¢)
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and the second fundamental form is

0o _(<xu,nu> <xu,nv>)

(Xp,my) (X4, 0y)

_ —r 0
N 0 —rsin?¢ /-

Therefore the Gaussian curvature of the sphere is

_ det(IT) _TQSin2¢_l
©det(I)  rtsin?¢ 1%

2. Torus: Let R > r > 0 be constants. The function
x(¢,0) = (R+rsing)cosd, (R + rsing)sinf, rcos¢), 0 < ¢,0 < 27
parametrizes a torus. We have
{X¢ = (rcos¢cosf,rcos¢psinf, —rsin ¢)
xg = (—(R+rsing)sinf, (R + rsin¢) cosf,0)

and the first fundamental form is

j r? 0
“\ 0 (R+rsing)?* J°
Now the unit normal vector s

X, X Xy

n= = (sin ¢ cos ), sin ¢ sin 4, cos ¢).

[E
and the second derivatives of X are

Xpp = (—Tsin¢gcosf, —rsin ¢sinf, —r cos )
Xgpp = (—rcos¢sinb, rcos ¢ cosb,0)
x99 = (—(R+ rsin¢) cosf, —(R + rsin ¢) sin 4, 0)

Thus the second fundamental form is

II = (<X¢¢7n> <X¢9,n))

(Xpp, 1) (X9, 1)

- —r 0
N 0 —(R+rsing)sing
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Therefore the Gaussian curvature of the torus is

_det(II) r(R+rsing)sing sin ¢
~det(I)  r2(R+7rsing)?  r(R+rsing)’

Note that for torus, we have K > 0 when 0 < ¢ < 7w, K = 0 when
¢ =0,mand K <0 when 7 < ¢ < 27.

Proposition 3.3.6 (Curvature of graphs of functions).

1. Let f(x,y), (x,y) € D C R?, be a function with continuous second
derivatives. The Gaussian curvature of the graph of z = f(x,y) in
rectangular coordinates is

2
K(oy) — Leetw =L

(L+ 2+ 12)*

2. Let f(r,0), (r,0) € D C R x (0,27), be a function with continuous
second derivatives. The Gaussian curvature of the graph of z = f(r, )
in cylindrical coordinates is

2 fo(rfr 4 foo) — (rfro — fo)?
- (22 7

K(r,0)

Proof. 1. Parametrize the graph of the function z = f(x,y) in rectangular
coordinates by

x(u,v) = (u,v, f(u,v).
We have
Xu = (17 07 fx)
x, = (0,1, f,)

and the first fundamental form is

I:(l"i_fg fmfy )
fofy 1415 )"

Now the unit normal vector is

o !
VIR RTR VITETR VI ETR

Xy X Xy

).

B qu X Xv” B
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and the second derivatives of x are

Xuu = (07 07 fmx)
Xuv = (O’ 0, faty)
Xov = (07 07 fyy)

Thus the second fundamental form is

fxm f:cy
g o- | VTR VIE RS
ry vy

VAR AT
Therefore the Gaussian curvature of the surface is

. det(]]) . fgjxfyy - ;?y

Codet(I) (14 24+ /2%

2. Parametrize the graph of the function z = f(r, ) in cylindrical coordi-
nates by

x(r,0) = (rcos@,rsinf, f(r,0)).

The rest is left for the reader as exercise.

Proposition 3.3.7 (Gaussian curvature of surfaces of revolution).

1. By graph of function: Let f(z), z € (a,b), be a function with contin-
uous second derivative. The Gaussian curvature of the surface obtained
by rotating the graph of x = f(z) on the xz-plane about the z axis is

B f//
K& = s e

2. By parametrized curve: Let (p(u),¥(u)), u € (a,b), be a reqular
parametrized curve. The Gaussian curvature of the surface obtained
by rotating the curve (z,z) = (p(u),¥(u)) on the xz-plane about the z

ax,[/s ZS wl( /w// //’l/},>
_ Y=o
K=o
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3. By arc length parametrized curve: Let (¢(s),¢(s)), s € (a,b),
be an arc length parametrized curve. The Gaussian curvature of the
surface obtained by rotating the curve (x,z) = (p(s),¥(s)) on the xz-
plane about the z axis is

Proof. 1. Parametrize the surface of revolution by graph of function x =
f(z) by
x(u,0) = (f(u)cosO, f(u)sinb, u).
The derivatives of x are

(

x, = (f'cosf, f'sinf, 1)

xg = (—fsiné, f cos,0)

Xy = (f" cos b, f"sin6,0)

Xup = (—f'sin b, f cosh,0)
= (—fcosf,—fsind,0)

[ X066

The first fundamental form is

1+ 00
=)

The unit normal vector is
( cos 0 sin 6 1
n=i{(— y 5
\/1+f/2 \/1+f,2 \/1+f/2
and the second fundamental form is

I
m—| Vit
0

)

_f
/1 + f/2
Therefore the Gaussian curvature is

P det(11) 1"

det(I) — f(1+ f2)%
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2. Parametrize the surface of revolution by parametrized curve (z,z) =

(#(u), 9 (u)) by
x(u,0) = (¢(u) cos b, p(u) sin @, (u)).

The rest are left for the reader as exercise.

3. Exercise.
O

Example 3.3.8 (Catenoid). Consider the surface obtained by rotating the
catenary x = f(z) = coshz in the xz-plane about the z axis which is called
catenoid. The Gaussian curvature of catenoid is

f//
F+ 77
cosh z
cosh z(1 + sinh 22)?
1

cosh® 2

K(z) = —

Example 3.3.9 (Torus). Show that the Gaussian curvature of the torus
obtained by rotating the arc length parametrized curve

(x,2) = (p(s),¥(s)) = (R—i—rsin;,rcos ;) , s €(0,2m)

about the z-axis is 5

sin —
K=—r
r(R+ rsinf)

Proof. Observe that

, S
@' = cos —,
r
1" L. s
@' = ——sin -
roor

By Proposition we have
K = ¥
s
sin —

r(R +rsin ?)
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Figure 15: Catenoid

O

Example 3.3.10 (Pseudosphere). Consider the surface obtained by rotating
the tractriz (Example |2.2.10

(x,2) = (p(t),1(t)) = (secht,t — tanht), t >0

about the z-axis. This surface is called the pseudosphere. Show that the
pseudosphere has constant Gaussian curvature equal to —1.
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Figure 16: Pseudosphere

Proof. Observe that

¢ = —sechttanht

¢" = sechttanh®t — sech’t
= secht(tanh?®t — sech?t)
= secht(1 — 2sech®t)

¥ = 1—sech’t
= tanh?¢

Y" = 2tanhtsech?t
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Note that
¢ +1)"? = sech®t tanh® t + tanh* ¢ = tanh® ¢(sech®t + tanh®t) = tanh®¢.

By Proposition we have

K _ w/((p/,gbll _ spll,l?b/)
p(p? + )2
_ tanh®#(—secht tanh ¢(2 tanh tsech®t) — secht(1 — 2sech®t) tanh” ¢)
B secht tanh* ¢
_ — tanh®¢(secht tanh® t)
- X secht tanh? ¢

Alternative, we may use the arc length parametrization of the tractrix given

by (Proposition
<¢<8)7¢(8)) = (6757 ln(es + \/628 - 1) - \/1 - 672S>? s > 0.

Then the Gaussian curvature of the pseudosphere is

]

We conclude this section by stating a formula for Gaussian curvature
which involves only the first fundamental form and its derivatives but the
the second fundamental form.

Theorem 3.3.11. Let x(u,v) be a regular parametrized surface. Suppose
F =0, i.e., the first fundamental form of x(u,v) is

1:(§ g)

Then the Gaussian curvature of x(u,v) is

%= e (via). " (7ia))



Towards Differential Geometry 113

Example 3.3.12 (Helicoid). Show that the Gaussian curvature of the heli-
coid parametrized by

x(u,0) = (ucos@,usinb, ), u,0 € R,

18
1

QN S—
(1 +u?)?

Proof. The first derivatives of x are
x, = (cos#,sin@,0),
X9 = (—usinf,ucosf,1).

Thus the first fundamental form is
1 0
I'= ( 0 1+ u? )

Ey=0

0
G,=—(1+u?) =2
“ 8u( w) Y

Therefore by Theorem [3.3.11] the Gaussian curvature is

< = —vra|(vea), " (V)

_ 1 ( 2u )
2v14+u2 \V1+u2/,

] VIF @ — ()
- ‘m( 1+ a2 )
1
T (w22

]

We summarize the formulas for Gaussian curvature in the following propo-
sition.

Proposition 3.3.13 (Formulas for Gaussian curvature). Let S be a regular
surface and K be its Gaussian curvature.
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1. Definition:
_det(II)  eg— f?
o det(I)  EG— F?

2. Graph of functions:

(a) Rectangular coordinates: For z = f(x,y),

f:c:cfyy - :?y

A+ 2+ 177

(b) Cylindrical coordinates: For z = f(r,0),

_ TQfTT(Tfr + f@g) — (rfre _ f9)2‘

K
(2 + 22+ [2)?

3. Surface of revolution:
(a) By graph of function: For x(u,0) = (f(u)cos®, f(u)sinf, u),

f//

K(u,0) = K(u) = I e

(b) By parametrized curve: Forx(u,0) = (¢(u)cos8, p(u)sin b, ¥(u)),

w/(¢/¢1/ _ @,/1/}/) '

K(u,0) = K(u) = o(p% + 1?)2

(iii) By arc length parametrized curve: Forx(u,d) = (p(u)cosf, p(u)sin b, (u)),
with @ + Y% =1,

K(u,0) = K(u) = ——

4. Parametrized surface with F' = 0:

o). (%))
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3.4 Gauss map and its differential

To understand the geometric meaning of the Gaussian curvature, we intro-
duce the Gauss map which is defined simply by the unit normal vector.

Definition 3.4.1 (Gauss map). Let S be a reqular surface in R with reqular
parametrization x(u,v). For each p = x(u,v), we associate the unit normal
vector n(p) to p. This defines a map n : S — S? from the surface S to the
unit sphere S? = {(z,y, 2) : 2> + y* + 2*> = 1} and is called the Gauss map
of S.

The Gauss map has the following distinguish properties.

Proposition 3.4.2. Let S be a reqular surface with reqular parametrization
x(u,v) and n : S — S? be the Gauss map which sends a point p € S to the
unit normal vector n = n(p) which is a point on the unit sphere S%. Let
p € S be any point on the surface S. Then the following statements hold.

1. The unit normal vector n = n(p) to the surface S is a unit normal
vector to the unit sphere S? at n.

2. The tangent space to the unit sphere S* at n = n(p) is equal to the
tangent space to the surface S at p. In other words,

TwS* = T,S.

3. The vectors n,(p) and n,(p) are tangent to S at p. In other words,
n,,n, € 7,5

which means both n,, n, can be written as linear combinations of x,
and X,.

Proof. 1. By writing down a regular parametrization of S2, one can prove
easily that the unit normal vector to S? at any point v € S? is v itself.

2. Observe that
7,8 ={veR: (v,n)},

it suffice to show that for any n € S?, we have

TuS* = {veR’: (v,n)}.
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Let n(0, ¢) be a parametrization of S? which is regular at n. By taking
derivatives of the constant function |[n(6,¢)||* = 1, we have

(ng,n) = (ng,n) = 0.
It follows that n is normal to S? at n and therefore

TwS? ={veR®: (v,n)} =T,8S.

3. Using an argument (see Lemma|l.3.35| proof of Theorem and the
exposition after Definition |3.3.3) which has been used for many times,
we see that

(n,,n) = (n,,n) =0
are constantly equal to zero. Therefore we have n,,n, € T,,S.
O

A consequence of the above proposition is that since both n, and n, are
orthogonal to n, their cross product n, x n, is normal to the surface S and
thus is a scalar multiple of x, X x,. This multiple is exactly the Gaussian
curvature.

Theorem 3.4.3. Let x(u,v) be a regular parametrized surface and n(u,v)
be the unit normal vector at x(u,v). Then

n, x n, = Kx, X X,
where K is the Gaussian curvature of the surface.

Proof. Since n,,n, € T,,S, we have n,, X n, is normal to the surface S and
thus
n, X n, = cx, X X,

for some real number ¢ which is a function on S. By Proposition [1.3.17, we
have
det(I) = (Xy X Xy, Xy X Xy)

and

det(I1) = (xy X Xy, Dy X 1)
= (Xy X Xy, Xy X Xy)
= Xy X Xy, Xy X Xy)

= cdet(])
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Note that det(7) > 0 and we obtain

det(I1)
= = K
“7 det()
where K is the Gaussian curvature of the surface. O

The Gaussian curvature has a geometric interpretation as follows. Let S
be a regular surface parametrized by x(u,v), (u,v) € D. Suppose Q2 C S'is a
region on S which is an open connected subset of S. We define A(2) as the
surface area of Q C S and o(Q) as the surface area of the image n(Q2) C S?
of (2 under the Gauss map. Now consider the small region

Q={x(s,t);u<s<u+Au,v<t<Av}CS

on S which is the image of a small rectangle (u,u + Au) X (v 4+ Av) C D.
We would like to compare the area of this small region 2 C S and the signed
areq[| of its image n(Q2) C S? under the Gauss map. The area of { can be
approximated by the parallelogram spanned by Aux, and Awvx, which has
area

AA = ||x, X X,||AuAv.

On the other hand, since n,, n, are tangent to S, we have
n, X n, = (n, X n,,n)n = +||n, x n,||n.

Here the sign is positive if n preserves the orientation at p = x(u,v) or
equivalently the Gaussian curvature is positive at p and the sign is negative
if n reserves the orientation at p or equivalently the Gaussian curvature is
negative at p. Thus the signed area of n(£2) can be approximated by

Ao = (Aun, X Avn,,n) = (n, x n,, n)AuAwv.

0The signed area of n(f2) is positive if n preserves orientation and is negative if n
reverses orientation.
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Now if we let Au, Av go to zero, the ratio of these two areas would be

do . Ao
dA ~ AuAvso AA
: (n, X n,,n)AulAv
= lim
Au,Av—0  [|X,, X X, || AulAv

(n, X n,, ||x, X x,||n)

[0 X x|
o (ny XNy, X, X X,)
B %0 X x|
det(11
= th((I)) (Proposition |1.3.17))
e

= K.

So we have the following geometric interpretation of Gaussian curvature
which can be thought of as an analogue of Proposition [2.3.12] for surface.

Proposition 3.4.4. Let S be a regular surface with parametrization x(u,v),
(u,v) € D. Let A and o be the signed surface area function on S and S*

respectively. Then we have
do

dA —
where K 1s the Gaussian curvature.

K

We may also understand the Gaussian curvature through the differential
of Gauss map, which is a linear operator on the tangent space 7},S induced
naturally by the Gauss map. Let f : 57 — S be a differentiable map from
regular surface S to regular surface Sy. Let x;(u, v) be a regular parametriza-
tion of S;. Then xo(u,v) = f(x1(u,v) gives a regular parametrization of Ss.
For each p € 51, we define a function df, : T,,S7 — T, S2 by

8x1 8X1 - 8X2 8X2
Ay (‘%*5%) =% T

which is a linear transformation from 7,,S; to T, S2 and is called the differ-
ential of f at p. One can show that d,f does not depends on the parametriza-
tion xy(u,v) of Sy. For if x;(s,t) is another regular parametrization of S,
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by chain rule in multivariable calculus, we have

Ox;  Ou 8X1 v 0%,

BBk 3511

ot Ot ou (915 v

ox, ouox; 0voxy
Ay (a_) = 4 (%a—u i &%)
8&% L Ov 0%
ds du = 0s Ov
0Xo
Os

which implies

and similarly df, (axl) = %.

Now for the case of Gauss map n : S — S?, we have Ty, S* = T,S for
any p € S (Proposition [3.4.2). Therefore the differential dn,, : T,,S — T,S of
Gauss map at p is a linear transformation from 7,5 to itself, in other words,

a linear operator on T},S.

Definition 3.4.5 (Differential of Gauss map). Let S be a regular surface in
R? with regular parametrization x(u,v). For each p € S, define dn,, : T,S —
T,S called the differential of Gauss map by

dn,(ax, + fx,) = an, + fn,
for any real numbers o, f € R.

The differential of Gauss map measures how rigorously the Gauss map,
that is the unit normal vector, bends near p along different directions. There
are two special directions which somehow determine the local geometry of
the surface.

Definition 3.4.6 (Principal curvatures and principal directions). Let S be
a reqular surface and p € S. Let &,& € T,S be two linearly independent
etgenvectors of the differential dn, : T,S — T,,S of Gauss map at p and k1, ko
be negative of the associated eigenvalues respectively. In other words,
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Then we say that k1, ke are the principal curvatures of S at p, and &1, &>
are the corresponding principal directions.

One may wonder whether we can always find two distinct principal direc-
tions, in other words, two linearly independent eigenvectors for dn, at any
p € S. In fact, once we prove that dn,, is self-adjoint, it will follow that there
exists two orthogonal principal directions.

Theorem 3.4.7 (Self-adjointness of differential of Gauss map). The differ-
ential of Gauss map dny, : T,,S — T,S is self-adjoint. In other words, for any
u,v €T1,S, we have

(dny(u),v) = (u,dny(v)).
Proof. Tt suffices to check that

<dnp(Xu), Xv> = <l’1u, Xv>
= —(n,X,,) (Lemma|l.3.35)
= —(n,Xyy)

(n,,x,) (Lemma [1.3.35)
= {dny(x), %)
{

X,), X
Xy, ANy (X))

]

Now applying the spectral theorem for self-adjoint operator (Theorem
1.6.15)) to dn,, we obtain the following theorem.

Theorem 3.4.8. Let S be a regqular surface in R® and p € S. Then there
exists principal directions &1,&> € 1,5 which constitute an orthonormal basis

for T,,S.

Next we find a matrix representation (Definition |1.6.3)) of the linear oper-
ator dn, which can be expressed in terms of the first and second fundamental
forms.

Proposition 3.4.9. The matriz representation of dn, with respect to basis
Xy, Xy 18

1y 1 eG— fF fE —eF
—UNIT) =~ ( fG—gF gE—fF)'
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In other words, we have

dn,(x,) = ax, + bx,
dn,(x,) = cx, + dx,

where
a b\ _ 1 eG— fF fE —eF
cd)  EG-F2\ fG—-gF gE—fF )
Proof. Let a,b, c,d be real numbers such that

{dnp(xu) =n, = axX, + bx,

dn,(x,) = n, = cx, + dx,

It follows that

Therefore
a b B e f E F\ '
(ta) = () e)
- () (5 F)
B f 9)FEG-F2\ -F E

L 1 (eG—fF fE—eF)
~ EG-F2\ fG—gF gE- fF

]

Now we can express Gaussian curvature in terms of principal curvatures.
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Theorem 3.4.10. Let S be a reqular surface and K be the Gaussian curva-
ture of S. Then for any p € S,

K(p) = det(dn,) = K1k

where det(dn,) is the determinant (Definition of dn, and ki, ke are
the principal curvatures of S at p.

Proof. Since dn,, is represented by the matrix —(/7)(17!), we have

_ det(I1)
=det(—(I)(I™Y)) = = K.
det(dn,) = det(~(I1)(17)) = TS
Since k1, ko are the eigenvalues of dn,, we have K = det(dn,) = k1ks. O

Since the Gauss map n does not depend on the parametrization x(u,v)
of the surface, we see that the Gaussian curvature also does not depend on
parametrization.

Another geometric quantity that comes out naturally from dn, is the
mean curvature.

Definition 3.4.11 (Mean curvature). Let S be a reqular surface and dn,, be
the differential of Gauss map at p € S. The mean curvature of S at p is

1 <gE—2fF+eG)

H= —%tr(dnp) = %(/{1 + kKg) = %tr((I[)(I_l)) = 2 EG — F2

where tr(dn,,) is the trace (Definition[1.6.6]) of dny, and k1, k2 are the principal

curvatures of S at p.

Note that if we reverse the direction of the unit vector n, that is, reserving
the order of the parameters u, v, there will be a change of sign of the mean
curvature but the Gaussian curvature would remain unchanged. So the sign
of mean curvature does not matter. A surface with mean curvature zero is
called a minimal surface.

Definition 3.4.12 (Minimal surface). Let S be a reqular surface in R® and
H be the mean curvature of S. We say that S is a minimal surface if
H =0 at every point of S.
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Minimal surfaces have a distinguish property which can be considered as
a two dimensional analogue of the arc length minimizing property (Theorem
of straight lines. A straight line segment is a curve of minimum arc
length among all curves with fixed end points. Similarly a minimal surface
is a surface of minimal surface area among all surfaces with fixed boundary
and hence its name.

Theorem 3.4.13. Let S be a minimal surface with parametrization x : D —
R3 such that x can be extended continuously to the boundary. Then S has
the minimum surface area among all surfaces with the same boundary of .S.

Example 3.4.14. Show that the catenoid parametrized by
x(0,v) = (coshwvcosf,coshvsinf, v), 1 <0 < 2m,v R,

1s a minimal surface.

Proof. We have

X9 = (—coshwvsinf,coshvcosb,0)
x, = (sinhwvcosé,sinhvsing,1)
Xg X X, = (coshwvcosf,coshvsin@, —coshvsinhv)
|xp X %,||* = cosh?v + cosh® v sinh? v = cosh? v(1 + sinh?v) = cosh’ v
n = (sechvcosf,sechvsiné, tanhv)

xgp = (—coshvcosf,—coshuvsing,0)

Xg, = (—sinhwvsiné,sinhvcosf,0)

Xy, = (coshwcos@,coshvsing,0).

Then the first and second fundamental forms are

| E F\ cosh? v 0
o F G ) 0 cosh? v

= (59)-(0 )

Thus the mean curvature is

1 (gE—2fF+eG) 1 (COSh2U—COSh2U) 0

H=—-
2 EG — F? cosh* v

)

Therefore the catenoid is a minimal surface. O
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To understand the geometric meaning of Gaussian curvature and mean
curvature, let’s take a closer look at the principal curvatures. A natural way
of studying the curvature of a surface is to examine the curvature of curves
on the surface. Let S be a regular surface and v € 7,5 be a unit vector
tangent to S at p. Suppose C' is a curve lying on S passing through p and
is tangent to v at p. In other words, the unit tangent vector T of C' at p
satisfies T = v. We would like to understand the curvature of S from the
curvature of the curve C'. It turns out that the curvature of C' at p depends
only on the unit tangent T € 7,5 and the angle between the unit normal N
of C and the unit normal vector of n at p.

Theorem 3.4.15. Let S be a regular surface and p € S be a point on S. Let
C be a regular parametrized curve passing through p. Then we have

kcos ¢ = —(T,dn,(T))

where T, k are the unit tangent vector, signed curvature of C' at p respectively,
dny, is the differential of Gauss map of S at p and ¢ is the angle between
the unit normal vector N of C' and the unit normal vector n of S at p.
Furthermore if T = ax, + 8%, € T),S, then we have

Kcos ¢ = ( 5)11( g )

where 11 is the second fundamental form.

Proof. Let x(u,v) be a regular parametrization of S. Since C' lies on S, C
has an arc length parametrization r(s) such that r(s) = x(u(s),v(s)) for
some functions u(s),v(s) with r(0) = p and r'(0) = T. By chain rule in
multivariable calculus, we have

x(u(s), v(s))

a
ds
u'(s)x, +v'(8)x,

and similarly

n'(s) = %n(s)

= u/(s)n, +v'(s)n,
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Observe that cos ¢ = (n, N) and we have

kcosp = k(n,N)

x,) + v'(0)dn,(x,)) (Definition
x, + 0'(0)x4))

|
|
L
=
oS
=%

Furthermore if T = ax, + fx, € 1,5, then v/(0) = «, v'(0) = (3 since
T =1r'(0) = «'(0)x, + v'(0)x, and we have

kecos¢ = —(T,u(0)n, +v'(0)n,)
- —<O./Xu + /vaa an, + /gnv>

e ) ()
- ()

where 1] is the second fundamental form. OJ

In particular if ¢ = 0, then the curvature of C' depends only on the
tangent direction T and is called the normal curvature of S along T.

Definition 3.4.16 (Normal curvature). Let S be a regular surface and p be
a point on S. Let v € T,S be a unit vector tangent to the surface S at p.
The normal curvature of S at p along v s

kn(V) = Kcos ¢ = —(v,dn,(v))

where k is the curvature of a curve C which passes through p and has unit
tangent vector equals to v, and ¢ is the angle between the unit normal vectors
N and n of C and S at p respectively.
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To visualize the normal curvature of a surface S at p along unit vector
v € T,,5, one may cut the surface using a plane which passes through p and
tangent to v and the normal vector n of S. Then the cross section, that is
the intersection of the plane and the surface S, is a curve with normal vector
n or —n and has curvature equals +x,(v), where &, is the normal curvature.

Note that if the choice of direction of n is reversed, the normal curvature
would have a change in sign. So the sign of normal curvature is not important.

Theorem 3.4.17. Let S be a regular surface and p € S be a point on S. Let
&1,& be the principal directions which constitute an orthonormal basis for
T,S and ki, ke be the associated principal curvatures at p respectively. Let
v € T,S be a unit vector tangent to S at p with v = cos 0&; + sin 0&; where
0 is the angle between v and & . Then the normal curvature of S at p along
v 1S
Kn(V) = K1 cos? 0 + kg sin® 6.
Proof. By Theorem [3.4.15] the normal curvature along v is

kn(V) = —(v,dny(v))
—(cos €, + sin 0€,, dn,(cos O€; + sin 6€5))
—(cos 0&; + sin 0€,, —kq cos 0€ — ko sin 0€s))

= k008?04 kysin? 6.

]

A direct consequence of the above theorem is that the normal curva-
ture attains its maximum and minimum along the two orthogonal principal
directions.

Theorem 3.4.18. Let S be a reqular surface and p € S. Let k1 < ko be the
principal curvatures of S at p which associate with two orthogonal principal
directions. Then for any unit vector v € T,,S tangent to S at p, the normal
curvature k,(v) along v satisfies

K1 < Ep(V) < Ko.

Let us summarize the properties of Gaussian curvature we have discussed
in the following theorem.

Theorem 3.4.19. Let S be a reqular surface parametrized by x(u,v) and K
be the Gaussian curvature of S.
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1.
_ det(IT)
det (1)
where I and I1 are the first fundamental forms of S.
2.
n, x n, = Kx, X X,
where n is the unit normal vector of S.
3. i
o
K=—
dA
where A and o are the signed area function on S and S* respectively.
4.

K = R1K2

where K1, ko are the principal curvatures associated with two orthogonal
principal directions.

3.5 Theorema egregium

One may find that the Gaussian curvature of a surface somehow describe the
change of normal vector along the surface. When Gauss introduced the no-
tion of Gaussian curvature, he noticed already that one does not need to use
normal vector to calculate the curvature. Say it in another way, the Gaussian
curvature depends only on the mensuration on the surface but not how the
surface is put into R3. This property of Gaussian curvature is so important
and elegant that Gauss named his result ‘Theorema Egregium’ which are
Latin meaning remarkable theorem. The theorem laid the foundation and
inspired the development of the theory of differential geometry. Before we
state the theorem, we introduce the notion of isometry.

Let S be a regular surface and f : S; — S be a differentiable bijective
map from S; to another regular surface S;. Then any regular parametrization
x1(u,v) of Sy induces a parametrization of Sy by xa(u,v) = f o x;1(u,v) =
f(x1(u,v)). Furthermore the first fundamental forms [ (u, v) and I5(u,v) on
Sy and Sy with respect to xj(u,v) and xy(u,v) can both be considered as
matrix valued functions of u,v. We say that f : S — Sy is an isometry if
L (u,v) = I(u,v) for any u,v.
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Definition 3.5.1 (Isometry). Let S; and Sy be regqular surfaces. Let f :
S1 — S5 be a differentiable bijective map from Sy to So. We say that a map
f 81 — Sy is an isometry if [ (u,v) = Iy(u,v) for any u,v, where I (u,v)
is the first fundamental form of Sy and Is(u,v) is the first fundamental form
of So induced by I,. We say that S1 and Sy are isometric if there exists an
isometry between S7 and Ss.

Roughly speaking, two regular surfaces S; and Sy are isometric if they
have the same first fundamental form. Intuitively, it means that one may get
Sy from S; by bending S; without stretching it. In this case, the mensuration
on S; and S3 would be the same. A curve on S; would have the same arc
length as its image in Ss. A region on S; would have the same surface area
as its image in S, and two curves on S; would intersect at the same angle as
their image in S;. Gauss’ groundbreaking result asserts that two isometric
surfaces must have identical Gaussian curvature.

Theorem 3.5.2 (Theorema egregium). Let S; and Sy be two regular sur-
faces. Suppose Sy and Sy are isometric, that is, there exists isometry f :
S1 — Sy between Sy and Sy. Then for any p € S, the Gaussian curvature
of S1 at p is equal to the Gaussian curvature of Sy at f(p). In other words,

for any p € Sy.

Proof. The proof of the theorem is complete if one can find a formula for
Gaussian curvature which involves only first fundamental form but not second
fundamental form. We will provide such a formula (Theorem and give
a proof of it at the end of this section. n

For example, one can get a cylindrical or conical surface by rolling up
a plane which has Gaussian curvature zero everywhere. The theorem then
implies that the Gaussian curvature of a cylindrical or conical surface must
also be identically zero because the Gaussian curvature of a plane is zero.
Another consequence of the theorem is that one cannot bend a plane into
a spherical surface without stretching the plane because a spherical surface
has nonzero Gaussian curvature. Thus it is impossible to draw a map for the
earth surface with uniform scale. The following example is less obvious.
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Example 3.5.3 (Isometry between catenoid and helicoid). Let Sy be the
catenoid which s parametrized by
x1(0,v) = (coshwvcos @, coshvsinf,v), (6,v) € (0,27) x R
and Sy be the helicoid which is parametrized by
x2(0,v) = (sinhwvcosf,sinhvsind, d), (0,v) € (0,27) x R.
The first fundamental forms of them are the same and is equal to

cosh® v 0
no.o) = ae.0 = (57 0, )

Catenoid Helicoid

Figure 17: Isometry between catenoid and helicoid

By theorema egregium (Theorem , the two surfaces have the identical

Gaussian curvature (See Example and Ezxample which is equal
to
1

K=——p.
cosh™v
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Catenoid and Helicoid are both minimal surface and thus have mean
curvature identically zero. However, the mean curvature of two isometric
surfaces may not be identical. For example, a cylindrical surface and a plane
are isometric but a cylindrical surface has nonzero mean curvature while that

of a plane is zero.

We conclude this section by providing a formula for Gaussian curvature
which involve only first fundamental form but not second fundamental form

as promised.

Theorem 3.5.4. Let x(u,v) be a reqular parametrized surface. Then

1 _Evv + 2Fuv - Guu Eu 2Fu - Ev 0
K=——+—= 2F, -G E F —| E
— 12\2 v u v

4(EG — F?) G, r a G,

In particular, if F'= 0 s identically zero, then

%= vra | (vra). " (V)

Proof. Since det(I) = EG — F? = ||x, X x,||* and ||x, X X,||n = x, X X,,

K(EG — F?)?
= det(I) det(I1)
= x| ) e

Xou, [|[Xu X Xo|[0)  (Xuo, [|Xu X Xy[|1)
Xy [[Xu X Xo|[1) (X, [|X0 X X, [|1)

(
(
(Xyuy X X Xy)  (Xypy Xy X Xy) '
(Xpu, Xu X Xp) Xy, Xy X Xy)

(

Xuus va> - <Xu1)7 Xuv> <qu, Xu> <qu7 Xv>

= (Xov, Xu) (Xu Xu) (X, Xo)
<va7 Xv) <Xv7 Xu) <Xv7 Xv>
0 <Xuv> Xu> <X1w7 Xv)

— | XpuyXu)  (Xu, Xu)  (Xu,X,) |- (Proposition [1.3.17)

(Xou, Xo) (X0, Xu) (X, Xy)

I

Q=N
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Observe that by product rule (Proposition |1.3.34)),
E., F,\ _ 0 (E F
_ 0 ((meu> <Xuaxv>)

Ou \ (X, Xy) (X4, X,)
= (e Gt Y () el )
2(Xyu, Xu) (Xyuy X)) + (X, Xui)

- (<xw,xv>+<xm,xu> 2(X s X0 )

Similarly

Ev Fv - 2<Xuv; Xu) <va7 Xu) + <Xuv7 Xv>
Fv Gv N <Xm)7 Xu> + <Xuv7 Xv> 2<X1}v7 Xv> ‘

Combining the above two equalities, we obtain

, -
(X, Xu) = Eja
(Xuv, Xu) = g”
) = 5
) = 2
T O R
oo a) = B~ (o) = o

Moreover by considering the second derivative of F' = (x,,x,) with respect
to u, v, we have

<qu7 va> = %(vaxu) - <vau7 Xu>
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which implies

E G
- uvy Buv/ — T d Fuv — uu.
<XUU7 va> <X X > 9 + 5
Therefore
£ E E E, G,
- UU‘I'Fuv_Guu —_— Fu——v 0 — G_
2 G 2 2 2 g 2 2
e [ N
G
- F = F q
2 G 2
as desire. If particular, if F' = 0, then
1 _EUU - Guu Eu _Ev 0 Ev Gu
K = —= -G, E 0 |-|E, E 0
20712
ARG a, 0 G G, 0 G
—1 2 2
= Igce (-EGE,, — EGGy, + GE,G, + EE,G, + GE> + EG?,)

E,, Guu k.G, FE,G, Eg n Gi
AFEG 4AEG = 4E2G  4EG?  AE?G  AEG?
Observe that

( E, ) B, E2 E,G,
VEG), VEG 2EVEG 2GVEG
VEG), VEG 2GVEG 2EVEG
Hence
(5a).* (72)
EG), EG),
E,, E2 E,G, G G2 E,G.

— — _l’_ — —
vEG 2EVEG 2GVEG VEG 2GVEG 2EVEG

EUU E’g EU GU Guu G12L Eu Gu
= TIVEC (_4EG TimG TiEGE T iEG T1EGE T 4E2G>

= —2KVEG

and the result follows. O
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Note that for any regular surface, there is always a parametrization with
F' = 0 identically zero.

One may ask whether the converse of theorema egregium holds. The
answer is negative. For example, it is known that there exists constant
Gaussian curvature surface which is not isometric to any part of a sphere.

3.6 Gauss-Bonnet theorem

In this section, we explain the Gauss-Bonnet theorem. The theorem is im-
portant because it relates a local quantity, the Gaussian curvature, with a
global quantity, the Fuler characteristic, of a surface. It can also be inter-
preted as an analogue of Theorem for surfaces. To state the theorem,
we introduce the notion of Euler characteristic. For a closed surface S, a
polyhedron modeled on S is a polyhedron whose vertices, edges, faces are
points, curves, regions on the surface S.

Definition 3.6.1 (Euler characteristic). The Euler characteristic of a
closed surface S is

xX(S)=v—e+f

where v, e and f are the number of vertices, edges and faces of a polyhedron
modeled on S.

Given a closed surface S, one can find many different polyhedrons mod-
eled on S but it can be proved that x(S) does not depend on the choice
of models. Two surfaces have the same Fuler characteristic if one can de-
form the surface to another without stretching. Thus Euler characteristic
is a topological invariandﬂ. For example, a sphere S? has Euler character-
istic x(S?) = 2 which means any polyhedron modeled on S? would have
v —e+ f = 2. Before we prove this fact, we derive a formula for area of
polygons on the unit sphere.

Theorem 3.6.2 (Area of polygon on unit sphere). Let «, 3,y be the interior
angles of a triangle, with edges being great circular amsEL on the unit sphere
and A be the area of the triangle. Then

a+fB8+yv=A+m.

" More precisely if S1 and S, are homeomorphic, which means there exists bijective map
f:S1 — So such that both f and f~! are continuous, then x(S;) = x(S2).
12A great circle on the unit sphere is a circle on the sphere with radius 1.
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More generally, Let o, o, ..., ay be the interior angles of a polygon with n
edges, which are great circular arcs, on the unit sphere and A be the area of
the polygon. Then

agtas+-Fa,=A+(n—2)m.

Proof. The second statement follows readily from the first by a standard
argument of cutting the polygon into n — 2 triangles. To prove the first
statement, consider a region on the unit sphere which is bounded by 2 great
semicircles with both interior angles equal a. The region occupied /27 of
the surface of the sphere and thus has an area of

Qo
— X 41 = 2.
2 T @

We will call such a region a biangle with interior angle a.

Figure 18: Biangle on sphere

Now extend the 3 edges of the triangle to great circles on the sphere
which cut the sphere into 8 regions. One may use 2 of the 8 regions to form a
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biangle with interior a and two such biangles can be obtained. Similarly, we
get two biangles with interior angle 5 and two biangles with interior angle
7. All 6 biangles obtained in this way cover (See Figure the unit sphere
with 4 extra triangles with interior angles a, (3, .

Figure 19: Triangle on sphere

By considering the total area of them, we get
2X20+2%x268+4+2x%x2y=4n+4A
where A is the area of the triangle with interior angles «, 3, which implies

a+pf+y=m+ A

Now we prove that the Euler characteristic of a sphere is 2.

Theorem 3.6.3 (Euler characteristic of sphere). A polyhedron which is mod-
eled on a sphere has Fuler characteristic x = 2.
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Proof. Consider a polyhedron modeled on the unit sphere. By deforming
the edges, we may assume that the edges are great circular arcs on the unit
sphere. Let v, e and f be the number of vertices, edges and faces of the
polyhedron. Suppose the k-th face, k = 1,2,..., f, is a polygon with ey
edges, ey interior angles ay,,a,, ..., ok, and has area equal to Ag. By
Theorem [3.6.2, we have

€k
Zaki = (6k — 2)7T + Ak
=1

Figure 20: Polygon on sphere

Summing up the above equalities for £ =1,2,..., f, we have
foek f f f
YD) DI SUEEE) S S
k=1 i=1 k=1 k=1 k=1

Now the sum of all interior angles of all faces is equal to 27 times the number

of vertices v which gives
I ek
Z Z Qp, = 2mv.
k=1 i=1
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The sum of all e, k = 1,2,..., f, is equal to 2 times the total number of
edges e of the polyhedron and we obtain

f

Z epm = 2me.

k=1

Furthermore, the sum of the area of all faces is equal to the area of the unit
sphere and we have

M~

Ak = 4.
k=1

Combining the above equalities, we have

2mv = 2me — 2nf + 4w
v—e+f = 2

]

By the classification theorem of closed surfaces, simple closed surfaces in
R3 are completely classified by its genus ¢. Intuitively, speaking the genus
of a closed surface is the number of ‘holes’ of the surface. For example, a
sphere has genus 0, a torus has genus 1 and one obtains a surface of genus
g by gluing ¢ tori together. The Euler characteristic of a closed surface in R
can be determined by its genus.

Theorem 3.6.4 (Euler characteristic of simple closed surface). Let S be a
simple closed surface of genus g. Then the Fuler characteristic of S is

X(5) =2-2g.

Proof. We have proved that the sphere S?, which has genus 0, has Euler
characteristic x(S%) = 2 (Theorem [3.6.3). Now we calculate the Euler char-
acteristic of a torus 7" which has genus 1. One may construct a polyhedron
modeled on a torus with 9 vertices, 18 edges and 9 faces. Therefore

X(T)=9—-18+9 =0.

Next we observe the change in Euler characteristics when gluing two surfaces.
Let S; and S5 be two closed surfaces. We may remove a circular region from
each surface and glue the two surfaces together along the boundaries of the
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two regions. We denote the new surface obtained in this way by Si1#S55
and call it the connected sum of S; and S5. Let vy, eq, fi and wvq, €9, fo be
the number of vertices, edges, faces of polyhedrons modeled on S; and S,
respectively. One may find such polyhedrons so that the regions removed on
the two surfaces are polygons with £ edges. When gluing the two surfaces,
k vertices, k edges and 2 surfaces have been removed. Thus the resulting
polyhedron modeled on S7#S5 has v 4+ vy — k vertices, e; 4+ e, — k edges and
fi1+ fo — 2 faces. Hence the Euler characteristic of S1#.955 is

X(S1#52) = (n+va—k)—(e1+e2—k)+ (fi+ fo—2)
= n—e+fitvo—e+ fo—2
= x(S1) + x(S2) — 2.

Now a closed surface S, in R? of genus g is obtained by gluing g — 1 tori to
a torus. Every time we glue one torus to a surface, the Euler characteristic
is decreased by 2. Therefore the Euler characteristic os Sy is

X(Sg) =0—-2(g—1)=2~-2g.
0

To prove the Gauss-Bonnet theorem, we introduce one more definition.
Let S; and S, be two simple closed surface in R3. Let f : S; — Sy be a
continuous map from S; to Ss. For ¢ € S,, we define the degree of f at g to
be the integer

number of preimages of ¢ preserving orientation
—number of preimages of ¢ reversing orientation °

deg(f,q) =

It can be proved that this integer are the same for almost all points ¢ € S5.
We call it the degree of f and denote it by deg(f). Intuitively, if the degree
of f: 51 — Sy is k, the first surface covers the second surface k times via
f. Now let S be a simple closed regular surface in R3 and n : S — S? be
its Gauss map. To calculate the degree of Gauss map, it is useful to note
that for any p € S, the Gauss map n is orientation preserving at p if the
Gaussian curvature at p is positive and is orientation reversing at p if the
Gaussian curvature at p is negative. Thus one needs to find the number of
points with positive and negative Gaussian curvature with a given normal
direction. It turns out that the degree deg(n) of the Gauss map depends
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only on the genus g of S. To see this, let S, be another simple closed surface
of genus g. One may always deform S continuously to obtain S, and the
degree of Gauss map in the process would remain constant. This is because
the degree changes continuously when one deforms the surface continuously
and degree takes only integer values. This implies that the degree of Gauss
map must be constant when the surface is being deformed. The degree of
Gauss map depends on the genus g in the following way:.

Theorem 3.6.5 (Degree of Gauss map of simple closed regular surface). Let
S be a simple closed surface of genus g. The the degree of Gauss map of S is

deg(n) =1—g.

Proof. It is not difficult to see that there exists a surface S, of genus g such
that there are exactly ¢ + 1 points on S, with unit normal vector (0,0, 1),
where g of them are orientation reversing, that is, having negative Gaussian
curvature, and the remaining 1 of them is orientation preserving, that is,
having positive Gaussian curvature. Now the degree of Gauss map of S is
equal to that of S, which is equal to 1 — g. O

We are ready to state and prove the Gauss-Bonnet theorem.

Theorem 3.6.6 (Gauss-Bonnet theorem). Let S be a simple closed regular

surface in R®. Then
/ / KdA = 2mx(S)
s

where K is the Gaussian curvature, x(S) is the Euler characteristic of S

and dA = y/det(I)dudv is the surface area element. In particular, if S is
homeomorphiﬂ to the sphere S, then x(S) =2 and

//KdA:47r.
s

13That means there exists a bijective map f : S — S2 from S to the sphere S? such
that both f and f~! are continuous.
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Proof. We have

/ KdA = / —dA (Proposition [3.4.4))
S

=
- deatn //32 i

= (1 —g)(4n) (Theorem [3.6.5)
- 27r(2 - 29)
= 27x(S) (Theorem [3.6.4)

Exercise 3

1. Prove that a regular parametrized surface in R3 is contained in a plane
if and only if the unit normal vector n is constant.

2. Prove that a regular parametrized surface in R3 is part of a sphere if
and only if all normal vectors pass through a fixed point.

3. Find the first fundamental form and the surface area of the following
parametrized surface.
(a) x(u,8) = (ucosh,usinf,u?), u € (0,1), 8 € (0,2m).
(b) x(u,0) = (u®cosf,u®sinf,u), u € (0,1), 6 € (0,27).

(¢) x(u,0) = (ucos@,usinb,f), ue (—1,1), 0 € (0,27).
(You may use [ V2% +1dx = (:C\/T+1n(x+ Va2 +1))+

directly.)

4. Prove that the area of the surface define by z = f(r,6), (r,0) € D,
where (r, ) is the polar coordinates on the xy-plane such that (z,y) =
(rcosf,rsinf), is given by

// \/r2+r2f,?+f92drd0
D




Towards Differential Geometry 141

d.

10.

Let x(u,v) be a regular parametrized surface. Let r(t) = x(u(t),v(t)),
a <t < b, be a curve lying on the surface. Prove that the arc length

of T (t) is
Zf¢(uo)1(g>m

where [ is the first fundamental form of x(u,v).

Find the second fundamental form and the Gaussian curvature of the
following parametrized surface.

(a) x(u,v) = (u? —v* 2uv,u® +v*), u € R, v > 0.
nneper surface) x(u,v) = (u — % +uw?, —v+ % — u?v, u* — v?),
(b) (E face) x(u,v) = (u— "5 +uv® o =P, u? = 0?)
u,v € R.

(c) (Torus) x(¢,0) = ((R + rsing)cosf, (R + rsin¢)sinf, r cos ¢),
¢,0 € (0,27), where R,r are constants.

Prove that the Gaussian curvature of the surface defined by z = f(x,y)

is )
fxxfyy - Ty

L+ 12+ 1)

Prove that the Gaussian curvature of the surface defined by z = f(r, )

in the cylindrical coordinates, where (r,#) is the polar coordinates in
the zy-plane such that (z,y) = (rcosf,rsinf), is given by

P o0 fr A foo) = (rfro — fo)?
- (r2 + 12 f2 + f7)?

K(z,y) =

K(r,0)

. Let r(s) be an arc-length parametrized space curve. The tangent devel-

opable surface of r is the surface parametrized by x(s,t) = r(s)+tT(s)
where T(s) is the unit tangent vector. Prove that the Gaussian curva-
ture of a tangent developable surface is always zero.

Let r(t) = (z(t),y(t)) be a regular parametrized curve on the xy-
plane. The conical surface spanned by the curve r(t) is the surface
parametrized by x(u,v) = (vz(u),vy(u),v), v € (0,400). Prove that
the Gaussian curvature of the conical surface is 0.
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11. Let f(u) be a second differentiable function and x(u, ) = (ucosf,usin0, f(u)),
u >0, 0 € (0,27), be a parametrized surface.

(a) Prove that the Gaussian curvature of the surface is
f/f//
Ku) = —/——=
W =0+ e

(b) Prove that

1 d 1

— [ —— | = K
2u du <1+f’2) (W)

(c) Suppose f(u) is a function such that

9 2
Pl =y 2

Prove that K is a constant and find the constant.

(This exercise shows that a surface with constant positive Gaussian
curvature may not necessarily be a sphere.)

12. Find the Gaussian curvature of the parametrized surface x(u,v) with
the following first fundamental form.

wr=(3 1)

1
(b) J = ( u2+62+1 ? )

u?+v2+1

01-(3 i)

13. Suppose the first fundamental form of a parametrized surface x(u,v)

1S f? 0
“(0 f?)

where f = f(u,v) > 0 is a second differentiable function. Show that
the Gaussian curvature of the surface is

1 [ 0 02
K:—ﬁ(w+ﬁ)lnf
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14. Find the mean curvature of the following parametrized surface.

(a) x(u,v) = (u,v,uv), u,v € R.

(b) (Torus) x(¢,0) = ((R + rsing)cosf, (R + rsing)sinb,r cos ¢),
¢,0 € (0,27), where R > r > 0 are constants.

(c) (Helicoid) x(u,8) = (aucosf,ausin,bd), u,0 € R where a,b > 0
are constants.

15. Prove that the surface defined by z = f(z,y) is a minimal surface if
and only if

(L4 £ fyy = 2fafufoy + L+ f) fou =0

16. Let x(u,v) be a regular parametrized surface. Let r(s) = x(u(s),v(s))
be a curve lying on the surface parametrized by arc length. Prove that

R(N(s),n(s)) = (@ o )11 ( . )

where k is the curvature of r(s), N is the unit normal vector to the
curve, n is the unit normal vector to the surface, II is the second
fundamental form of the surface, @ and © are the derivatives of v and
v with respect to s respectively.

17. Consider the surface obtained by rotating the curve on the xz-plane
defined by z = f(2), a < z < b, along the z-axis.

(a) Prove that the area of the surface is given by

b
27‘[’/ /14 f?dz

(b) Prove that the Gaussian curvature of the surface is

1
K = _f—
S+ f7)?
(c) Prove that the mean curvature of the surface is
" 2
—f*—-1
1=t

2f(1+ f72)2
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18. For each of the surface S, calculate [[; KdA, where K is the Gaussian
curvature and dA is the area element of S.

(a) (Helicoid) x(u,0) = (ucosf,usind, ), v € (0,1), 6 € (0,27).
(b) (Ellipsoid) x(¢,0) = (asingcosf,asingsinb,beosg), ¢ € (0,7),

6 € (0,2m).
) sin @ cos ¢
(Hint: dp = —
c) (a2 cos? o + b2 sin® go)% b2\/a? cos? o + b2 sin® ¢

19. Consider the surface obtained by rotating the arc length parametrized
curve (z,2) = (¢(s),1(s)), s € (0,1), ¢(s) > 0, on the zz-plane, along
the z-axis with parametrization

x(s,0) = (p(s) cosb, p(s)sinb, 9 (s)), for s € (0,1),0 € (0,2m)

(a) Find the second fundamental form of the surface.

(b) Prove that the Gaussian curvature of the surface is given by

(c) Prove that the mean curvature of the surface is given by

_ @wﬁ + (p/w/

H
2p¢

(d) Prove that the surface is a minimal surface if and only if ¢’ is
constant.

(e) Suppose the surface is a minimal surface and v(s) = sinh™' s =

In(s + v/s?2+1). Find ¢(s).

20. Let x(u,v) be a regular parametrized surface and n = ”:“x“” be the
unit normal vector. Let

re(Fe) = )
a= (5 0)- () 62 - (283 26
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be the first and second fundamental form respectively. Suppose

n, = a11X, + a12X,
n, = a91X, + a2X,
(a) Prove that
ay; a
7= — 1 G2 g
a21 A2
(b) Prove that
2
a1 Q12 eg— f
n, X n, = X, X Xy = ————X, XX
“ ! as ag | " EG-—F2"" v

(This exercise shows that n, x n, = Kx, X x,.)

(c) Prove that

%, = (a1 eG—2fF+gE\

X XNy, XX,y = (a114+022) Xy XX,y = — Xy XXy
11+a22 50— 2

(This exercise shows that x, X n, + n, X x, = —2Hx, X X,.)

21. Let x(u,v) be a regular parametrized surface. A parallel surface of x
is a surface parametrized by

y(u,v) = x(u,v) + an(u, v)

Xy XXy
[l X% ||

where n =
constant.

is the unit normal vector of x(u,v) and a is a

(a) Prove that
Yu X Yo = (1 —2Ha + Ka?)x, X X,
where K and H are the Gaussian and mean curvature of x respec-
tively.
(b) Prove that the unit normal vector to y is n.
(c) Prove that at a regular point, the Gaussian curvature of y is

K
1—2Ha + Ka?
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(d) Prove that at a regular point, the mean curvature of y is

H— Ka
1—2Ha+ Ka?

(e) Prove that if the mean curvature H of x is a nonzero constant,
then there exists a such that y has constant Gaussian curvature.

22. Let r(s), s € [0,(] be a regular simple closed space curve parametrized
by arc length. A tubular surface is a surface S parametrized by

x(s,0) =r(s) + acosN(s) + asin B(s)

where N(s) and B(s) are the unit normal and binormal to the curve
at r(s) respectively, and a is a constant.

(a) Prove that x is regular if ar(s) < 1 for any s, where k(s) is the
curvature of the curve at r(s).

(b) Prove that the Gaussian curvature of the surface is given by

k(s) cos

K(s,0) = —

a(l — ak cos6)

27 l
// KdA :/ / K (s,0)|[% x %o dsdo
S 0 0

(d) Find the Euler’s characteristic of the tubular surface S.

(¢) Find
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