
HKDSE Physics and M2
by Toby Lam

This article was originally published on Toby Lam’s blog, which hosts a variety of con-
tent on topics ranging frommathematics, technology, to life at Oxford and career advice.
For more, visit tobylam.xyz.

A lot of the formulae ⁷ given to you in HKDSE Physics, as7 https://www.hkeaa

.edu.hk/DocLibrar

y/HKDSE/Subject_

Information/phy/

Phy-Formulae-e.pdf

it turns out, can be derived from the calculus taught in M2.
In this series of posts we’re going to go through deriving
some of them. For a more detailed treatise on this topic, I
would highly recommend checking out the dynamics lec-
ture notes ⁸ , which is a course for first year mathematics at8 https://courses.ma

ths.ox.ac.uk/plugi

nfile.php/3628/mod

_resource/content/

/DynamicsLectureNot

es2022_updated.pdf

Oxford.
Wewould look at rectilinearmotion in part I, projectile/cir-

cular motion in part II and waves in part III.

Part I: Rectilinear motion

Rectilinearmotion is one-dimensionalmotion along a straight
line. Due to it only having one dimension, all properties
about the system could be represented by one variable only.
We wouldn’t need to deal with coordinates.

Consider some point particle with constant mass <. As
we’ve seen in M2, we can respectively let displacement, ve-
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locity and acceleration as functions of time

Displacement = A(C)

Velocity = E(C) = 3A

3C

Acceleration = 0(C) = 32A

3C2 .

Under this language, we can reframe Newton’s First law as

Momentum = ?(C) = <E(C) = <
3A

3C

and Newton’s second law as

Force = �(C) = 3?

3C
= <

3E

3C
= <0.

Introducing Assumptions

To get any further, we need to introduce some assumptions
in DSE physics. In rectilinear motion we assume that

1. Force is constant (e.g. gravitational force)

This means that acceleration is constant! We would now
write 0(C) as 0 as it’s just a constant. This is crucial as it
means that

32A

3C2 = 0

3A

3C
= 0C + �1

A(C) = 1
2 0C

2 + �1C + �2

by repeated indefinite integration for some constants �1,�2.
Naturally, we ask what those constant are. We can see that

E(0) = 0 · 0+ �1 = �1

A(0) = 1
2 0 · 0+ �1 · 0+ �2 = �2



10

So �1 is the velocity at C = 0. �2 is the displacement at C = 0,
which is generally taken to be 0.

Finally putting it all together we have

E(C) = 0C + E(0)

A(C) = 1
2 0C

2 + E(0)C + A(0).

Does this look familiar?

Conservation of Energy

To see why energy is conserved, we must first define the ki-
netic energy of a point particle at time C to be

)(C) = 1
2<

(
3A

3C

)2

and the potential energy for a point particle with displace-
ment A (under constant force) to be

+(A) = −<0A.

From DSE physics, we know that energy is conserved.
I.e.) ++ is kept constant. However this is rather unobvious.
Note how kinetic energy is with respect to time, but poten-
tial energy is with respect to displacement. In general, why
would something with respect to time be related to some-
thing with respect to displacement?

It turns out that for energy to be conserved, the force
needs to be conservative. In the one dimensional case, this
means that there must exist a potential energy function+(A)
such that �(A) = − 3

3A
+(A). This also means that the force is

dependent on displacement only: If you are at the same dis-
placement at different times, the force experienced is still the
same.



11

For the case of DSE physics, as the acceleration/force is
kept constant we could have +(A) = −<0A, so the force is
conservative. Note how we can add any constant to +(A)
and it would still be a valid potential function. Refer to the
dynamics lecture notes for a more general analysis on con-
servative forces.

Now how do we show conservation of energy for this
specific case? There’s two ways of doing it. Either we ex-
pand all the terms as follows

() ++) =
[
1
2<

(
3A

3C

)2
−<0A

]
= <

[
1
2

(
0C + E(0)

)2
− 0(12 0C

2 + E(0)C + A(0))
]

= <

[
1
2 0

2C2 + E(0)0C + 1
2E(0)

2 − 1
2 0

2C2 − 0E(0)C − 0A(0)
]

=
1
2<E(0)2 −<0A(0)

Or we can do it more abstractly by considering the deriva-
tive of ) ++

product and chain
rule

−< 32A

3C2
= −�(A)

=
3+

3A

3

3C
() ++) = 3

3C

[
1
2<

(
3A

3C

)2
++(A)

]
=

1
2< · 23

2A

3C2 · 3A
3C

+ 3+

3A

3A

3C

= <
32A

3C2 · 3A
3C

−<
32A

3C2 · 3A
3C

= 0

So ) ++ is constant.
In particular, this means that

1
2<E(C)2 −<0A(C) = 1

2<E(0)2 −<0A(0).

Does this look familiar?
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Part II

We would now look into projectile motion and uniform cir-
cular motion.

I would highly recommend checking out a video on vec-
tors ⁹ before reading the post. Having a general idea of what9 https://youtu.

be/fNk_zzaMoSs vectors are would be extremely helpful.

Motion on the 2D Plane

To studymotion on the 2Dplane, we need the idea of curves.
The trajectory of a moving particle naturally forms a curve
as time varies.

Mathematically, we model a curve as a function from R,
the real numbers, to R2, the cartesian plane. Here are some
examples below.

Straight Line. The function A(C) = (C, 0), for 0 < C < 1 de-

1 2 3
−1

1 fines the curve shown. You could imagine it as a ballmoving
1 unit on the G-axis from C = 0 to C = 1. Without doing any
mathematics, you could intuitively see that the velocity is
going to be constant and so acceleration would be 0.

Mathematically, we can take the derivative of A(C) by tak-
ing the derivative of its components. So we would have
A′(C) = (1, 0). This would be the velocity of the ball, a con-
stant, unit vector pointing towards the G-axis. The accelera-
tion, as you can guess, would be A′′(C) = (0, 0)which is the 0
vector.

Parabola. The function A(C) = (3C, 4C − 9.81
2 C2) for 0 < C < 1

1 2
−1

1
3 defines the curve shown. You could imagine it as throwing

a ball at the origin under the effect of gravity. Could you try
to understand this motion by considering the coordinates
separately and using the equations we developed in Part I?
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Intuitively, we know that the velocity would have the
same G-component for all time t and that the acceleration
would be a constant vector pointing downwards.

1 2
−1

1
3

C = 0.497

Mathematically, we have A′(C) = (3, 4− 9.81C) and A′′(C) =
(0,−9.81). In the figure, the green vector is the velocity and
the blue vector is the acceleration. Both vectors’ magnitude
are scaled down by a factor of 1/3.

Circle. The function A(C) = (cos C, sin C) for 0 < C < 2� de-

1

fines the curve shown. You can imagine as a ball uniformly
rotating around the origin with radius 1.

Intuitively, we know that the velocity would be the tan-
gent vector to the circle. The magnitude would be constant
(1) as the motion is uniform. Acceleration would also be
constant and pointing towards the origin.

1

C = �/6

Mathematically, wehave A′(C) = (− sin C, cos C) and A′′(C) =
(− cos C,− sin C), which alignswith our intuition. Once again
the green vector is the velocity and the blue vector is the ac-
celeration.

As you can see the amount of behaviour we can model
with curves (the explicit construction of the A(C) function is
called curve parameterization) is highly unconstrained! It
is powerful enough to describe a far wider range of curves
than just plots of H = 5 (G) (which one can imagine as plot-
ting A(C) = (C, 5 (C)) ∀C ∈ R). There are other ways of con-
structing curves such as using level sets.

Projectile Motion

Similar to part I, the crucial assumption in DSE projectile
motion is that the only force exerted on the particle is the
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gravitational force. So once again we have

A′′(C) = (0,−6)
A′(C) = (� ·

1,−6C + �1)

A(C) = (� ·
1C + � ·

2,−1
2 6C

2 + �1C + �2)

for some constants � ·
1,� ·

2,�1,�2 by repeated “integration”.
Similar to part I we could find those constants in terms of
initial velocities/displacement. As such most properties of
projectile motion could be analysed by splitting into G and
H-axis.

Anotherwayof looking at it courtesy ofHenryYip ¹⁰would10 https://henry-

yip.github.io/ be to consider

A(C) = (� ·
2,�2) + (� ·

1,�1)C + (0,−6/2)C2

which tells you that for small C, A(C) looks like a straight line
starting from initial displacement (� ·

2,�2) with the direc-
tion of initial velocity (� ·

1,�1). Gradually the quadratic term
dominates and we get the parabolic shape. This idea is sim-
ilar to Taylor expansions.

Perhaps, then, the most interesting aspect about projec-
tile motion is the conservation of energy. Why is it that en-
ergy is still conserved when we use the magnitude of the
velocity vector in kinetic energy (instead of one dimensional
velocity)? How does the formalism developed in part I re-
late to the 2 dimensional case? Let’s make some definitions
first.

Let A(C) = (G(C), H(C)). So G(C), H(C) are the x and y compo-
nents of A(C) respectively. As suchwehave A′(C) = (G′(C), H′(C))
and A′′(C) = (G′′(C), H′′(C)). Now we have

Kinetic energy = ) =
1
2<(G′(C)2 + H′(C)2)

Potential energy = + = <6H(C)
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So we have

) ++ =
1
2<(G′(C)2 + H′(C)2) +<6H(C)

=
1
2<(� ·

1
2 + (−6C + �1)2) +<6(−1

2 6C
2 + �1C + �2)

= <

[
1
2�

·
1

2 + 1
2 6

2C2 − 6C�1 +
1
2�

2
1 −

1
2 6

2C2 + 6�1C + 6�2

]
=

1
2<(� ·

1
2 + �2

1) +<6�2

which is the total energy at initial time.
A more proper way of doing this would involve multi-

variable calculus. Again refer to the dynamics lecture notes
for a more general analysis on conservative forces.

Uniform Circular Motion

Let’s think about a ball uniformly rotating around the ori-
gin. We know that two variables completely determine its
behaviour, its radius and its velocity. As suchwe can param-
eterize A(C) = (' cos(:C),' sin(:C))where ' is the radius and
: is some variable that as it turns out is related to angular
velocity.

To intuitively see why : is related to angular velocity:
Consider how A(C) = (cos(C), sin(C)), 0 < C < 2� is one full an-
ticlockwise rotation around the unit circle, but A(C) = (cos(2C),
sin(2C)), 0 < C < � is the same full anticlockwise rotation in
half the time. We doubled : and the time taken is halved.
Could you guess a relationship between : and angular ve-
locity before we do the maths?
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Let’s find out the velocity and the acceleration. We have

A(C) = (' cos(:C),' sin(:C))
A′(C) = (−': sin(:C),': cos(:C))
A′′(C) = (−':2 cos(:C),−':2 sin(:C))

These formulae immediately tell us all we know about uni-
form circular motion!

Firstly, A(C) ⊥ A′(C) ⊥ A′′(C) from simple coordinate ge-
ometry (or you could use the dot product if you are familiar
with linear algebra).

Secondly, the magnitude of the velocity is√
'2:2(sin2(:C) + cos2(:C)) = ':.

So we now know E = ':.
What about angular velocity? We see that for a full an-

ticlockwise rotation to take place, C needs to go from 0 to
2�/:. The total angular change would be 2�. As such the
angular velocity is 2�:

2� = :. So : is the angular velocity!
Finally, A′′(C) = −:2A(C), so 0 = :2'!
As such we also have 0 = E2/'

Part III: Waves

In the final part, we would discuss waves. How do we for-
mulate waves mathematically? Why are waves often de-
picted by sine curves?

Wave Equation

The wave equation is the (partial differential) equation that
describes all sorts of waves (water, sound, light ...) It can be
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written compactly as

¥D = 22∇2D.

Unfortunately, to understand and derive the above would
involve heavy calculus, even if we confine ourselves to one-
dimensional waves.

Instead, we would like to explore the mathematical for-
mulation of the sinusoidal travelling wave. The sinusoidal
travelling wave is one of many solutions to the wave equa-
tion and is the one studied extensively in DSE physics.

The one-dimensional sinusoidal travellingwave could be
represented by D(C, G) = � sin(:G − FC + #) where G is dis-
tance and C is time for some constants �, :,F,#. Try guess-
ing what physical meaning those constants have! It would
be revealed at the end.

You could imagine this as a function from R2 to R. It
takes in time and distance and tells you the displacement of
the wave.

In the graph below, we took � = F = : = 1 and # = 0.
The G-axis is red and the C-axis is green.
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We can look at how the wave looks like at time 2 by con-
sidering the intersection of the graph D(C, G) and the plane
C = 2.

In the graph below, we took C = 0 for the red curve and
C = 2 for the green curve.

If we look at the graph along the time axis, does this look
like displacement time graphs? Can you guess what direc-
tion the wave is travelling to? How could we change the
direction of the wave? What is the wavelength? How does
the wavelength correspond to the constants?

Similarly, if we’re interested at a particular distance G =

2, we could look at the intersection of the graph D(C, G) and
the plane G = 2.

In the following graph, we took G = 0 for the red curve
and G = 2 for the green curve.



19

If we look at the graph along the distance axis, does this look
like displacement distance graphs? What is the period of the
wave? How does the period correspond to the constants?

Answers and More Questions

Turns out, the wavelength � is equal to 1/: and F is the (an-
gular) frequency of the wave. Can you deduce why that is
the case?

What about #? What does it represent?
Can you think of how to parametrize stationary waves

using a similar D(G, C)?

Further Reading

For more on one-dimensional wave equations, there is a Li-
breTexts article ¹¹ which explains more.

11 https://chem.librete

xts.org/Courses/Pac

ific_Union_College/

Quantum_Chemistry/

2%3A_The_Classic

al_Wave_Equation/

.01%3A_The_One-Dimen

sional_Wave_Equation


